A.G. Khakimov
Bending of single-layer graphene. Multiphase Systems. 19 (2024) 4. 162–167 (in Russian).
Bending of single-layer graphene
A.G. Khakimov
Mavlyutov Institute of Mechanics URFS RAS, Ufa, Russia
Abstract
An analytical geometrically nonlinear model of flexible single-layer graphene or a flexible beam is presented, for an element of which the
equilibrium equations are written in projections of forces onto natural coordinate axes: tangent, normal to the axis, and the sum of moments
relative to the axis coinciding with the binormal. The bending moment is defined as the product of the bending rigidity and the change in
curvature taken in exact form. A nonlinear boundary value problem for single-layer graphene or a flexible beam in a deformed state is
formulated in dimensionless form and exact analytical general solutions are obtained in elliptic functions, based on which the deformation
modes of the flexible beam, distribution of tension forces, shear forces, and bending moments are determined. An exact analytical solution
is also given for the case of a dimensionless bending moment acting at the free end with zero shear force in elliptic functions. The action
of the tension force is taken into account by a parameter depending on the curvature and the tension force at the free end. Formulas for
finding the shape of single-layer graphene or a flexible beam and dimensionless tension forces are obtained. The shear force and bending
moment are calculated accordingly. If the tension force at the free end is zero, the curvature of the cross-section is also zero, so the bending
moment is zero, then the differential equation of bending is simplified. Taking into account the effect of the average pressure does not
complicate the task. In the differential equation, an additional parameter appears for the desired function, taking into account the effect of
the average pressure. The effect of the average pressure depends on the thickness of the flexible single-layer graphene or flexible beam.
Keywordssingle-layer graphene,
cylindrical bending,
shape,
forces,
shear forces,
bending moment
Article outline
Linear bending of a cantilever rod under all-round pressure and longitudinal force is considered by M.A. Ilgamov in static and dynamic settings. The transverse distributed force on the rod is taken into account, arising during bending as a result of the formation of a difference in the areas of the convex and concave parts of the surface. As noted in the work of M.A. Ilgamov, starting with the generalizing works on the theory of thin plates and shells Rayleigh, Love the transverse distributed force is taken to be equal to the pressure difference. Taking into account the difference in the areas of the convex and concave surfaces, appearing during bending of the rod and cylindrical bending of the plate, leads to a distributed transverse force directed towards the concavity.
B.D. Annin and co-authors present an analytical geometrically nonlinear model of a flexible cylindrical frame (rim) of a transformable precision large-sized reflector of antennas used in space technology, manufactured using polymer composite materials with shape memory. Using a geometrically nonlinear model, accurate analytical solutions are obtained that allow one to determine preliminary geometric dimensions and optimal shape of the flexible frame, as well as to estimate the accumulated energy.
Here, an analytical geometrically nonlinear model of flexible single-layer graphene or a flexible beam is presented, taking into account the effect of average pressure. The problem of determining the shape, forces and moments in single-layer graphene is set. For an element of single-layer graphene or a flexible beam, equilibrium equations are written in projections of forces on natural coordinate axes: tangent, normal to the axis and the sum of moments relative to the axis coinciding with the binormal. The bending moment is defined as the product of the bending rigidity and the change in curvature, taken in exact form. It is found that the general solution of the differential equation is expressed through elliptic functions. It is found that with an increase in the shear force, the deflections of single-layer graphene increase. Taking into account the effect of the average pressure does not complicate the problem. In the differential equation, an additional parameter appears at the desired function, taking into account the effect of the average pressure. The effect of the average pressure depends on the thickness of the flexible single-layer graphene or flexible beam. The results of the work can be used in the calculation of thin-walled structural elements such as shells, plates, under the action of high pressures.
References
- Илъгамов M.A. Изгиб и устойчивость консольного стержня под действием давления на его поверхности и продольной силы // Известия
российской академии наук. Механика твердого тела. 2021. № 4. С. 77–88.
DOI: 10.31857/S0572329921040061
Ilgamov M.A. Bending and stability of a cantilever bar under the action of pressure on its surface and longitudinal force // Mechanics of Solids. 2021.
Vol. 56, No. 4. Pp. 495–504.
DOI: 10.3103/S0025654421040087
- Стретт Дж.В. Теория звука. Т. 1. М.: Гостехиздат, 1955. 504 с.
Rayleigh Strutt J.W. The Theory of Sound. Vol. 1. London: Macmillan, 1894. 500 p.
- Ляв А. Математическая теория упругости. М.; Л.: ОНТИ, 1935. 674 с.
Love A. A Treafise on the Mathematical Theory of Elasticity. Cambridge: Univ. Press, 1927. 643 p.
- Shen H.Sh. Postbuckling Behavior of Plates and Shells. Shanghai Jiao Tong University, 2017. 675 p.
- Ильгамов M.A. Влияние давления окружающей среды на изгиб тонкой пластины и плёнки // ДАН. 2017. Т. 476, № 4. С. 402–405.
DOI: 10.7868/S086956521728009X
Ilgamov M.A. Influence of the ambient pressure on thin plate and film bending // Doklady Physics. 2017. Vol. 62, No. 10. Pp. 461–464.
DOI: 10.1134/S1028335817100020
- Ильгамов М.А. Изгибные колебания пластины при изменении среднего давления на ее поверхностях // Акустический журнал. 2018. Т. 64, № 5.
С. 598–604.
Ilgamov M.A. Bending vibrations of a plate with a change in the average pressure on its surfaces // Acoustic journal. 2018. Vol. 64, No. 5. Pp. 598–604.
(in Russian)
DOI: 10.1134/S0320791918050039
- Охоткин К.Г., Власов А.Ю., Захаров Ю.В., Аннин Б.Д. Аналитическое моделирование гибкого обода рефлекторов космических антенн //
Прикладная механика и техническая физика. 2017. Т. 58, № 5. С. 190–200.
DOI: 10.15372/PMTF20170519
Okhotkin K.G., Vlasov A.Y., Zakharov Y.V., Annin B.D. Analytical modeling of the flexible rim of space antenna reflectors // Journal of Applied Mechanics
and Technical Physics. 2017. Vol. 58, No. 5. Pp. 924–932.
DOI: 10.1134/S0021894417050194
- Аннин Б.Д., Власов А.Ю., Захаров Ю.В., Охоткин К.Г. Исследование статической и динамической устойчивости гибких стержней в геометрически
нелинейной постановке // Известия российской академии наук. Механика твердого тела. 2017. № 4. С. 6–18.
EDN: zbpwul
Annin B.D., Vlasov A.Y., Zakharov Y.V., Okhotkin K.G. Study of static and dynamic stability of flexible rods in a geometrically nonlinear statement //
Mechanics of Solids. 2017. Vol. 52, No. 4. Pp. 353–363.
DOI: 10.3103/S002565441704001X
- Киселев О.М., Рапопорт Э.Ф. О струйном обтекании упругой пластины // Известия АН СССР. Механика жидкости и газа. 1976. № 4. С. 35–42.
https://mzg.ipmnet.ru/ru/get/1976/4/35-42
Kiselev O.M., Rapoport, ?.F. Jet flow around an elastic plate // Fluid. Dyn. 1976. Vol. 11, No. 4. Pp. 520–526.
DOI: 10.1007/BF01012996
- Киселев О.М., Рапопорт Э.Ф. О струйном обтекании упругой оболочки // Известия АН СССР. Механика жидкости и газа. 1977. № 2. С. 24–32.
https://mzg.ipmnet.ru/ru/get/1977/2/24-32
Kiselev O.M., Rapoport ?.F. Jet flow around an elastic shell // Fluid Dyn. 1977, Vol. 12, No. 2. Pp. 186–192.
DOI: 10.1007/BF01050686
- Хакимов А.Г. Обтекание гибкой цилиндрической оболочки плоским потоком идеальной жидкости // Известия АН СССР. Механика жидкости и
газа. 1975. № 6. С. 147–151.
https://mzg.ipmnet.ru/ru/get/1975/6/147-151
Khakimov A.G. Flow around a flexible cylindrical shell by a plane stream of an ideal liquid // Fluid Dyn. 1975. Vol. 10, No. 6. Pp. 992–996.
DOI: 10.1007/BF01023279
- Киселев О.М., Безотрывное обтекание круговой цилиндрической оболочки // Тр. сем. по краев. задачам. 1982. Вып. 18. С. 104–115.
Kiselev O.M., Non-separation flow around a circular cylindrical shell // Proc. sem. on boundary value problems. 1982. Issue 18. Pp. 104–115.
- Ильгамов М.А. Изгиб и устойчивость цилиндрической оболочки при ее поперечном обтекании жидкостью // Прикл. мех. 1975. Т. 11, № 3. С. 12–
19.
Ilgamov M.A. Bending and stability of a cylindrical shell during transverse flow of liquid around it // Appl. mech. [Prikladnaya mehanika] 1975. Vol.
11, No. 3. Pp. 12–19.
- Хакимов А.Г. К задаче об обтекании круговой цилиндрической оболочки // Известия Российской академии наук. Механика жидкости и газа.
2020. № 2. С. 12–18.
DOI: 10.31857/S0568528120020073
Khakimov A.G. Flow around a Circular Cylindrical Shell // Fluid Dynamics. 2020. Vol. 55, No. 2. Pp. 154–161.
DOI: 10.1134/S001546282002007X
- Огибалов П.М., Колтунов М.А. Оболочки и пластины. М.: Изд-во Московского университета. 1969. 695 с.
Ogibalov P.M., Koltunov M.A. Shells and plates. Moscow: Moscow University Publishing. 1969. 695 p.