ISSN 2658–5782
DOI 10.21662
Electronic Scientific Journal


© Институт механики
им. Р.Р. Мавлютова
УФИЦ РАН

Яндекс.Метрика web site traffic statistics

Nasyrova D.A. Natural fluctuations of the liquid in vertical and horizontal wells. Multiphase Systems. 19 (2024) 3. 125–131 (in Russian).
2024. Vol. 19. Issue 3, Pp. 125–131
URL: http://mfs.uimech.org/mfs2024.3.018,en
DOI: 10.21662/mfs2024.3.018
Natural fluctuations of the liquid in vertical and horizontal wells
D.A. Nasyrova
Mavlyutov Institute of Mechanics UFRC RAS, Ufa

Abstract

Currently, hydraulic fracturing (FRACKING) technology is widely used in oil production. Cracks are created in the formation, fixed with propants to prevent them from closing. The paper considers the natural fluctuations of the liquid in a vertical oil well with a closed upper boundary and in a horizontal well with multiple fracturing. Based on a mathematical model describing the movement of a column of liquid in a well and filtration in a bottomhole zone exposed to hydraulic fracturing, solutions to the problem of intrinsic damping vibrations of a column of liquid in a well are obtained. We have obtained a characteristic equation for determining the natural frequencies of vibrations. The dependences of natural frequency, attenuation coefficient and attenuation decrement on crack conductivity and reservoir permeability are investigated.

Keywords

hydraulic fracturing,
oil well,
natural oscillations,
reservoir permeability,
attenuation coefficient

Article outline

Oil production is a complex and knowledge–intensive process that is continuously being modernized and improved, both in the practical and theoretical fields. Currently, one of the problems of the oil and gas industry is to maintain the level of oil production against the background of depletion of deposits with traditional reserves and involvement in the development of hard-to-recover hydrocarbon reserves. In these conditions, geological and technological measures to intensify oil production have been widely used, the most effective of them is considered to be hydraulic fracturing. Hydraulic fracturing (FRACKING) is a method of intensifying the operation of wells, leading to a drastic change in its flow rate. The formations that are being put into operation have low permeability, because of this, proven oil reserves are depleted. Thanks to hydraulic fracturing, it is possible to revive old wells and significantly increase the flow rate. Therefore, hydraulic fracturing technology is used in both production and injection wells and the tasks of determining the characteristics of hydraulic fracturing, the geometry of cracks and changes in reservoir characteristics appear. It is believed that an effective and convenient way from the point of view of technical implementation to determine the quality of perforation and fracture parameters of a hydraulic fracturing is a method based on the excitation of natural vibrations of a column of liquid in an oil well.

This study examines the natural fluctuations of the liquid column in a vertical oil well, which occur when the pumps of the well are abruptly closed or opened (water hammer), with the upper boundary open. A cased horizontal well of length is also considered, which communicates with the formation by means of radial fractures of hydraulic fracturing located evenly along the well. A transcendental equation is obtained from which complex natural frequencies are determined, according to which the oscillation frequency, attenuation coefficient, oscillation amplitude and other characteristics describing the natural vibrations of the liquid in a horizontal well with a system of cracks perpendicular to the wellbore are found. The dependences of the frequency and attenuation coefficient of pressure fluctuations in various sections of the well on the values of reservoir permeability and hydraulic fracturing parameters were studied. It is shown that acoustic diagnostics based on the analysis of natural vibrations in the well can serve as an effective tool for studying the bottomhole zone of the well.

References

  1. Экономидес М., Олини Р., Валько П. Унифицированный дизайн гидроразрыва пласта: от теории к практике. Москва-Ижевск: Институт компьютерных технологий, 2007. 237 с.
    Economides M., Olini R., Valko P. Unified Hydraulic fracturing design: from theory to practice. Moscow-Izhevsk: Institute of Computer Technologies, 2007. 237 p. (in Russian)
  2. Carey M., Mondal S., Sharma M. Analysis of Water Hammer Signatures for Fracture Diagnostics // SPE Annual Technical Conference and Exhibition. Texas, USA, 28–30 September 2015. SPE-174866-MS.
    DOI: 10.2118/174866-MS
  3. Patzek T., De A. Lossy Transmission Line Model of Hydrofractured Well Dynamics // Journal of Petroleum Science and Engineering. 2000. V. 25 (1-2). P. 59–77.
    DOI: 10.2118/46195-MS
  4. Аносова Е.П., Нагаева З.М., Шагапов В.Ш. Фильтрация флюида к скважине через радиальную трещину ГРП при постоянном расходе // Изв. РАН. МЖГ. 2023. № 2. С. 90–101.
    Anosova E.P., Nagaeva Z.M., Shagapov V.Sh. Filtration of fluid to a well through a radial fracture of hydraulic fracturing at constant flow // Izv. RAS. MZHG. 2023. No. 2. Pp. 90–101. (in Russian)
    DOI: 10.31857/S0568528122600692
  5. Cinco-Ley H., Samaniego-V. Transient Pressure Analysis for Fractured Wells // JPT. 1981. P. 1749–1766. SPE 7490.
    DOI: 10.2118/7490-PA
  6. Хабибуллин И.Л., Хисамов А.А. К теории билинейного режима фильтрации в пластах с трещинами гидроразрыва // Вестник Башкирского университета. 2018. Т. 23, № 4. С. 958–963.
    Khabibullin I.L., Khisamov A.A. On the theory of bilinear flow regime in the layers with hydraulic fracturing cracks // Bulletin of Bashkir University. 2018. Vol. 23, No. 4. Pp. 958–963. (in Russian)
    EDN: yuxnqt
  7. Хабибуллин И.Л., Хисамов А.А. Нестационарная фильтрация в пласте с трещиной гидроразрыва // Известия РАН. Механика жидкости и газа. 2019. № 5. С. 6–14.
    DOI: 10.1134/S0568528119050050
    Khabibullin I.L., Khisamov A.A. Unsteady Flow through a Porous Stratum with Hydraulic Fracture // Fluid Dynamics. 2019. V. 54, No. 5. P. 594–602.
    DOI: 10.1134/S0015462819050057
  8. Хабибуллин И.Л., Хисамов А.А. Моделирование нестационарной фильтрации в системе пласт-трещина гидроразрыва // Вестник Томского государственного университета. Математика и механика. 2022. № 77. С. 158–168.
    Khabibullin I.L., Khisamov A.A. Modeling of unsteady filtration in a formation - hydraulic fracture system // Bulletin of Tomsk State University. Mathematics and mechanics. 2022. No. 77. Pp. 158–168. (in Russian)
    DOI: 10.17223/19988621/77/12
  9. Нагаева З.М., Шагапов В.Ш. Об упругом режиме фильтрации в трещине, расположенной в нефтяном или газовом пласте // Прикладная математика и механика. 2017. Т. 81, № 3. С. 319–329.
    EDN: yspcjl
    Nagaeva Z.M., Shagapov V.Sh. Elastic seepage in a fracture located in an oil or gas reservoir // Journal of Applied Mathematics and Mechanics. 2017. V. 81, No. 3. P. 214–222.
    DOI: 10.1016/j.jappmathmech.2017.08.013
  10. Шагапов В.Ш., Нагаева З.М. Приближенное решение задачи об упругом режиме фильтрации в трещине, находящейся в нефтяном пласте // Инженерно-физический журнал. 2020. Т. 93, № 1. С. 206–215.
    EDN: rvgckr
    Shagapov V.Sh., Nagaeva Z.M. Approximate Solution of the Problem on Elastic-Liquid Filtration in a Fracture Formed in an Oil Stratum // Journal of Engineering Physics and Thermophysics. 2020. V. 93, No. 1. P. 201–209.
    DOI: 10.1007/s10891-020-02109-4
  11. Шагапов В.Ш., Хамидуллин И.Р., Нагаева З.М. Фильтрация к вертикальной скважине из пласта, подверженного ГРП, в случае коротких трещин // Инженерно-физический журнал. 2020. Т. 93, № 6. С. 1414–1423.
    EDN: ntvjuc
    Shagapov V.Sh., Khamidullin I.R., Nagaeva Z.M. Filtration to a Vertical Well from a Broken-Down Formation in the Case of Short Fractures // Journal of Engineering Physics and Thermophysics. 2020. V. 93, No. 6. P. 1363–1372.
    DOI: 10.1007/s10891-020-02241-1
  12. Поташев К.А., Мазо А.Б., Мухина М.В. и др. Моделирование притока пластового флюида к трещинам бесконечной проницаемости многозонного гидроразрыва пласта с помощью трубок тока // Ученые записки Казанского университета. Серия: Физико-математические науки. 2022. Т. 164, № 1. С. 101–121.
    Potashev K.A., Mazo A.B., Mukhina M.V. et al. Modeling of fluid inflow towards multistage hydraulic fractures of infinite permeability using stream tubes // Scientific Notes of Kazan University. Series: Physical and Mathematical Sciences. 2022. Vol. 164, No. 1. Pp. 101–121. (in Russian)
    DOI: 10.26907/2541-7746.2022.1.101-121
  13. Башмаков Р.А., Насырова Д.А., Шагапов В.Ш. Собственные колебания жидкости в скважине, сообщающейся с пластом, при наличии трещины ГРП // Прикладная математика и механика. 2022. Т. 86, № 1. С. 88–104.
    Bashmakov R.A., Nasyrova D.A., Shagapov V.Sh. Natural vibrations of fluid in a well connected to the formation, in the presence of a hydraulic fracture // Applied Mathematics and Mechanics. 2022. Vol. 86, No. 1. Pp. 88–104. (in Russian)
    DOI: 10.31857/S0032823522010027
  14. Шагапов В.Ш., Башмаков Р.А., Хакимова З.Р., Насырова Д.А. Колебания столба жидкости в открытой скважине и сообщающейся с пластом, подверженным ГРП // Вестник Башкирского университета. 2022. Т. 27, № 4. С. 872–880. Shagapov V.Sh., Bashmakov R.A., Khakimova Z.R., Nasyrova D.A. Fluid column oscillations in an open hole and communicating with a reservoir exposed to hydraulic fracturing // Bulletin of Bashkir University. 2022. Vol. 27, No. 4. Pp. 872–880. (in Russian)
    DOI: 10.33184/bulletin-bsu-2022.4.10
  15. Bashmakov R.A., Nasyrova D.A., Khakimova D.A. Natural Vibrations of Fluid in a Well Connected with the Reservoir by a System of Radial Fractures // Fluid Dynamics. 2024. Vol. 59, No. 2. P. 291–299.
    DOI: 10.1134/S001546282460024X