ISSN 2658–5782

DOI 10.21662

DOI 10.21662

Electronic Scientific Journal

2019. Vol. 14. Issue 3, Pp. 176–183

URL: http://mfs.uimech.org/mfs2019.3.024

DOI: 10.21662/mfs2019.3.024

URL: http://mfs.uimech.org/mfs2019.3.024

DOI: 10.21662/mfs2019.3.024

The impact of an additional inlet point on the hot outlet side on the vortex tube productivity

Privalov L.Yu.^{∗}, Mikhaylenko C.I.^{∗∗}

Based on numerical simulation, the production of cold and hot air on a modified countercurrent vortex tube is
studied. A feature of the modification under study is an additional air inlet area along the axis of the pipe from
the hot outlet side. An additional point of blowing air is designed to redistribute the gas flows at the cold and hot
outlets. Computational experiments were performed in the OpenFOAM software package using the sonicFoam solver
based on the

Ranque–Hilsch effect,

vortex tube,

turbulence,

OpenFOAM

The article considers a vortex tube, supplemented by another air inlet channel. The additional inlet is oriented along the axis of the main channel and is located in its center on the side of the hot diaphragm. The objective of this design is to redistribute the swirling air flows in order to provide the biggest output of cold air.

The mathematical model of the processes under consideration is written on the basis of the equations of continuity, momenta and energy for the case of viscous compressible flow. The system of equations is supplemented by the equation of state of an ideal gas and equations for the kinetic energy of turbulence and the dissipation rate of turbulence. Thus, the turbulent flows inside the vortex tube are described by the

Computational simulation is performed in the OpenFOAM software using the sonicFoam solver. The choice of a solver is dictated by the fact that transonic flows with shock waves can be realized in the channel of a vortex tube and, especially, in the diaphragm of cold air. In preparing the finite-difference grid, much attention is paid to preserving the orthogonality and uniformity of the sizes of the final volumes. The significant size of the finite difference grid is dictated by the choice of parallel computations using MPI. This approach allows us to accelerate calculations up to 3.5 times with the involvement of 6 processes.

The results show that the additional air inlet channel has a noticeable effect on the redistribution of flows in the vortex tube. However, this effect should be taken into account only for “short” pipes with a main channel length $$*L* < 50 cm. The explanation for this effect, apparently, lies in the formation of a soft “piston” directed towards the cold diaphragm in the center of the channel. In general, this is a positive property that can be used to achieve a greater yield of cold air in practice.

- Hilsch R.
The use of the expansion of gases in a centrifugal field as cooling process //
Review of Sientific Instruments. 1947. V. 18. Pp. 108–113.

DOI: 10.1063/1.1740893 - Ranque G.J. Experiments on expantion a vortex with simultaneous exhaust of hot air and cold air // J. Phys. Radium. 1933. V. 4. Pp. 112–114 (in French).
- Eiamsa-Ard S., Promvonge P.
Review of Ranque-Hilsch effects on vortex tubes //
Renewable and Sustainable Energy Reviews. 2008. V. 1. Pp. 1822–1842.

DOI: 10.1016/j.rser.2007.03.006 - Subudhi S., Sen M.
Review of Ranque–Hilsch vortex tube experiments using air //
Renewable and Sustainable Energy Reviews. 2015. V. 52. Pp. 172–178.

DOI: 10.1016/j.rser.2015.07.103 - Thakare H.R., Monde A., Parekh A.D.
Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review //
Renewable and Sustainable Energy Reviews. 2015. V. 52. Pp. 1043–1071.

DOI: 10.1016/j.rser.2015.07.198 - Borisoglebskiy I.K., Metusova M.V., Mikhaylenko C.I.
The dependence of the Ranque–Hilsch effect on the cold outlet geometry //
Multiphase Systems. 2018. V. 13, No. 3. Pp. 52–58 (in Russian).

DOI: 10.21662/mfs2018.3.008 - Xue Y., Arjomandi M., Kelso R.
A critical review of temperature separation in a vortex tube //
Experimental Thermal and Fluid Science. 2010. V. 34, No. 8. Pp. 1367–1374.

DOI: 10.1016/j.expthermflusci.2010.06.010 - Majidi D., Alighardashi H., Farhadi F.
Best vortex tube cascade for highest thermal separation //
International Journal of Refrigeration. 2018. V. 85. Pp. 282–291.

DOI: 10.1016/j.ijrefrig.2017.10.006 - Moraveji A., Toghraie D.
Computational fluid dynamics simulation of heat transfer and fluid flow characteristics
in a vortex tube by considering the various parameters //
International Journal of Heat and Mass Transfer. 2017. V. 113. Pp. 432–443.

DOI: 10.1016/j.ijheatmasstransfer.2017.05.095 - Mikhaylenko C.I.
Dependence of the temperature distribution in the vortex tube on the geometry of the swirler //
Proceedings of the Mavlyutov Institute of Mechanics. 2017. V. 12, No. 2. Pp. 174–179 (in Russian).

DOI: 10.21662/uim2017.2.026 - Mikhaylenko C.I.
Simulation of the vortex tube: design of a hexagonal mesh for computational experiments in OpenFOAM //
Proceedings of the Mavlyutov Institute of Mechanics. 2016. V. 11, No. 1. Pp. 112–118 (in Russian).

DOI: 10.21662/uim2016.1.017 - Mikhaylenko C.I.
Vortex tube modelling: outlet parameter dependencies of cold air production //
Journal of Physics: Conference Series. 2019. V. 1158, No. 3. 032032.

DOI: 10.1088/1742-6596/1158/3/032032 - Gutsol A.F. The Ranque effect // Physics-Uspekhi. 1997. V. 40. Pp. 639–658.

DOI: 10.1070/PU1997v040n06ABEH000248 - Khait A., Noskov A., Alekhin V., Bianco V.
Analysis of the local entropy generation in a double-circuit vortex tube //
Applied Thermal Engineering. 2018. V. 130. Pp. 1391–1403.

DOI: 10.1016/j.applthermaleng.2017.11.136 - Rafiee S., Sadeghiazad M.
Experimental and 3D CFD investigation on heat transfer and energy separation inside
a counter flow vortex tube using different shapes of hot control valves //
Applied Thermal Engineering. 2017. V. 110. Pp. 648–664.

DOI: 10.1016/j.applthermaleng.2016.08.166 - Liu J., Chen S., Gan M., Chen Q.
Heat transfer and flow resistance characteristics inside an innovative vortex enhanced tube //
Applied Thermal Engineering. 2018. V. 144. Pp. 702–710.

DOI: 10.1016/j.applthermaleng.2018.04.082 - Launder B.E., Spalding D.B.
The Numerical Computation of Turbulent Flows //
Computer Methods in Applied Mechanics and Engineering. 1974. V. 3, No. 2. Pp. 269–289.

DOI: 10.1016/0045-7825(74)90029-2 - Adiullin B.R., Mikhaylenko C.I.
The influence of the vortex tube channel length on the separation of air by its temperature.
Multiphase Systems. 14 (2019) 1. 36–43 (in Russian).

DOI: 10.21662/mfs2019.1.005 - Adiullin B.R., Mikhaylenko C.I.
Influence of the channel length of a vortex tube on the air temperature separation //
Journal of Physics: Conference Series. 2019. V. 1268. 012001.

DOI: 10.1088/1742-6596/1268/1/012001