ISSN 2658–5782
DOI 10.21662
Electronic Scientific Journal


© Институт механики
им. Р.Р. Мавлютова
УФИЦ РАН

Яндекс.Метрика web site traffic statistics

Nasibullayev I.Sh., Nasibullaeva E.Sh., Darintsev O.V. Study of fluid flow through a channel deformed by piezoelement. Multiphase Systems. 13 (2018) 3. 1–10.
2018. Vol. 13. Issue 3, Pp. 1–10
URL: http://mfs.uimech.org/mfs2018.3.001
DOI: 10.21662/mfs2018.3.001
Study of fluid flow through a channel deformed by piezoelement
Nasibullayev I.Sh., Nasibullaeva E.Sh., Darintsev O.V.
Mavlutov Institute of Mechanics, UFRC RAS, Ufa

Abstract

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.

Keywords

hydrodynamics,
hydrodynamic resistance,
piezoelement,
linear elasticity,
finite element method

Article outline

Purpose: the development of a three-dimensional computer model of fluid flow in a channel with a hydrodynamic resistance, where the form of the hydro resistivity varies according to the periodic law and is determined by the deformation of the tube by the piezoelectric element.

Methodology: the Lame equations were solved by the finite element method in the FreeFem ++ package. The equations of hydrodynamics were discretized in time according to the Euler scheme and solved by the finite element method in the FreeFem ++ package; The solution of the nonlinear problem was found by Picard iterations.

The findings of research:

  1. the interchangeability of the Neumann and Dirichlet boundary conditions is shown: by selecting the piezoelectric element pressure on the outer part of the tube, one can obtain the same deformation of the inner part of the tube as when setting the displacement of the contact surface inwards by a define value (the dependence is linear);
  2. studied two fluid flow regime in the deformed tube: the tube inlet is closed, the flow induced tube deformation; both ends are open, the flow is induced both by the deformation of the tube and by the differential pressure applied to the layer. The first regime allows one to test the computer model, and the second regime allows one to offer a liquid dosing mechanism controlled by two parameters: the piezoelement compression rate and the differential pressure;
  3. it is found that the fluid flow rate depends on the compression frequency of the piezoelectric element and, if there is no pressure drop, does not depend on the physical parameters of the fluid. This theoretically makes it possible to implement a hydraulic microdrive with a linear ”mechanical“ (consumable) characteristic;
  4. under the influence of the pressure drop, a constant component inversely proportional to the viscosity of the liquid is added to the periodic component of the fluid flow;
  5. it is shown that one can obtain a flow regime corresponding to the droplet extrusion by selecting parameters (frequency, pressure drop). The volume of the droplet squeezed out during the period decreases with increasing frequency.

    Originality/value: The proposed computer model describing the fluid behavior in microchannels using piezoelectric drives is the first step in developing a theoretical basis for creating microdrives and executive micromechanisms.

References

  1. Bruus H. Theoretical microfluidics. Lecture notes third edition. MIC Department of Micro and Nanotechnology Technical University of Denmark. 2006.
    URL: http://homes.nano.aau.dk/lg/Lab-on-Chip2008_files/HenrikBruus_Microfluidics%20lectures.pdf
    (дата обращения: 10.04.2018).
  2. Stroock A.D., Dertinger S.K.W., Ajdari A. et al. Chaotic Mixer for Microchannels // Science. 2002; Vol. 295(5555). Pp. 647–651.
    (DOI: 10.1126/science.1066238)
  3. Насибуллаев И.Ш. Разработка компьютерной модели основного элемента агрегата дозирования топлива // Вычислительные технологии. 2016. Т. 21, № 2. С. 26–41.
    (http://www.ict.nsc.ru/jct/annotation/1724)
  4. Насибуллаев И.Ш., Насибуллаева Э.Ш., Денисова Е.В. Динамика течения жидкости в технических системах с жиклерами // Известия Уфимского научного центра РАН. № 4. 2015. С. 20–25.
    (http://sciencerb.ru/vyp/4_2015/20-25.pdf)
  5. Насибуллаев И.Ш., Насибуллаева Э.Ш. Влияние температуры на динамику течения жидкости в технических системах с жиклерами // Труды Института механики им. Р.Р. Мавлютова Уфимского научного центра РАН. 2016. Т. 11, № 1. С. 1–9.
    (DOI: 10.21662/uim2016.1.001)
  6. Насибуллаев И.Ш., Насибуллаева Э.Ш. Течение жидкости через систему связанных элементов технического устройства типа труба–гидросопротивление–труба // Труды Института механики им. Р.Р. Мавлютова Уфимского научного центра РАН. 2016. Т. 11, № 2. С. 141–149.
    (DOI: 10.21662/uim2016.2.021)
  7. Насибуллаев И.Ш., Насибуллаева Э.Ш. Течение жидкости через гидросопротивление с динамически изменяемой геометрией // Труды Института механики им. Р.Р. Мавлютова Уфимского научного центра РАН. 2017. Т. 12, № 1. С. 59–66.
    (DOI: 10.21662/uim2017.1.009)
  8. Ландау Л., Лифшиц Е.М. Теоретическая физика. Т. 7. Теория упругости. М.: Наука, 1987. 248 с.
  9. Hecht, F. New development in FreeFem++ // J. Numer. Math. 20 (2012), no. 3–4, 251-–265. 65Y15.
    (DOI: 10.1515/jnum-2012-0013)
  10. Ландау Л., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Наука, 1988. 736 с.
  11. Белоусов К.И., Евстрапов А.А., Кухтевич И.В., Посмитная Я.С. Основы нанотехнологий. Часть 1. Микро- и нанотехнологии для биологических и медицинских исследований. Часть 2. Капельная микрофлюидика: Учеб. пособие. СПб: Университет ИТМО, 2015. 56 с.
    (http://books.ifmo.ru/file/pdf/1839.pdf)