ISSN 2658–5782
DOI 10.21662
Electronic Scientific Journal


© Институт механики
им. Р.Р. Мавлютова
УФИЦ РАН


Gimaltdinov I.K., Rodionov A.S., Kochanova E.Y. Numerical study of the dynamics of detonation waves in a bubbly liquid with an abrupt decrease in the diameter of a cylindrical channel. Multiphase Systems. 2025;20(2):68–77 (in Russian).
2025. Vol. 20. Issue 2, Pp. 68–77
URL: http://mfs.uimech.org/mfs2025.2.010,en
DOI: 10.21662/mfs2025.2.010
Numerical study of the dynamics of detonation waves in a bubbly liquid with an abrupt decrease in the diameter of a cylindrical channel
I.K. Gimaltdinov🖂, A.S. Rodionov, E.Y. Kochanova
Ufa State Oil Technical University, Ufa, Russia

Abstract

The processes of reflection and diffraction of a pressure wave in a cylindrical channel filled with a bubbly liquid are considered in the presence of an abrupt decrease in the channel diameter. The case is considered when the gas phase of the bubbly liquid is an explosive gas mixture. The main purpose of the work is numerical study of the dynamics of detonation waves in a bubbly liquid with an abrupt decrease in the diameter of a cylindrical channel. To numerically analyze the evolution of waves in a cylindrical channel filled with a bubbly liquid, a system of equations in Lagrangian variables was used, where the Eulerian coordinates at the initial moment of time are taken as Lagrangian variables. An acetylene-oxygen stoichiometric mixture was used as the gas phase for calculations. As a liquid phase, a water–glycerin solution with a mass fraction of 0.5 glycerin was used. It is shown that when high-pressure waves pass through cylindrical channels with an abrupt decrease in diameter containing a bubbly liquid with a combustible gas, both continuous propagation of detonation and attenuation of detonation are possible; and the transition from one detonation mode to another depends not only on the transverse dimensions of the narrow part of the channel, but also on the volume content of bubbles. It has been established that when high-pressure waves pass through cylindrical channels with an abrupt decrease in diameter containing a bubbly liquid with a combustible gas, detonation can be caused by the following reasons: collision of an incident wave with rigid walls in the area of channel diameter reduction; as a result of interference of waves during propagation from a wide to a narrow part of the channel. An analysis of the dynamicsof detonation wave propagation shows that with a low volume gas content, detonation is formed only when high-pressure waves pass into a narrow part of the channel in the direction of the incident wave movement due to wave interference.

Keywords

bubbly liquid,
detonation,
explosion initiation,
cylindrical channel

Article outline

The processes of reflection and diffraction of a pressure wave in a cylindrical channel filled with a bubbly liquid are considered in the presence of an abrupt decrease in the channel diameter. The case is considered when the gas inside the bubbles is explosive.

PURPOSE

Numerical study of the dynamics of detonation waves in a bubbly liquid with an abrupt decrease in the diameter of a cylindrical channel.

METHODOLOGY

A cylindrical channel filled with a gas-liquid mixture with an abrupt change in the cross-sectional area is considered. It is assumed that the gas phase of the bubbly liquid is an explosive gas mixture. At the initial moment of time t = 0, at the boundary z0 = 0, the pressure increases abruptly by the value Δp0. It is necessary to determine the dynamics of the wave process at t > 0.

The following assumptions are made to describe the two-dimensional axisymmetric wave motion of a bubble medium: The mixture is monodisperse, i.e. in each elementary volume all the bubbles are spherical and of the same radius, viscosity and thermal conductivity are significant only during interphase interaction and, in particular, during bubble pulsation. There is no mass transfer between bubbles and liquid.

To numerically analyze the evolution of waves in a cylindrical channel filled with a bubbly liquid, it is more convenient to use a system of equations in Lagrangian variables. The Eulerian coordinates at the initial moment of time are taken as Lagrangian variables.

An acetylene-oxygen stoichiometric mixture is used as the gas phase for calculations. As a liquid phase, a water–glycerin solution with a mass fraction of 0.5 glycerin.

FINDINGS

When high-pressure waves pass through cylindrical channels with an abrupt decrease in diameter containing a bubbly liquid with a combustible gas, both continuous propagation of detonation and attenuation of detonation are possible. The transition from one detonation mode to another depends not only on the transverse dimensions of the narrow part of the channel, but also on the volume content of bubbles.

Studies also show the dependence of the critical radius required for detonation initiation in a bubbly liquid on the volume gas content. An increase in the volume gas content in the range from 1 to 5% leads to an increase in the critical radius by 10%. There is also a weak dependence of the critical radius on the bubble radius: increasing the bubble radius from 1 mm to 2 mm increases the critical radius by 3%. Numerical calculations have shown that when a step pulse is formed, the value of the critical radius practically does not depend on the distance to the narrow part in the cylindrical channel; in this case, the oscillations present in the step can have a small effect.

ORIGINALITY

It has been established that when high-pressure waves pass through cylindrical channels with an abrupt decrease in diameter containing a bubbly liquid with a combustible gas, detonation can be caused by the following reasons:

  • collision of an incident wave with rigid walls in the area of channel diameter reduction;
  • as a result of interference of waves during propagation from a wide to a narrow part of the channel.

An analysis of the dynamics of detonation wave propagation shows that with a low volume gas content, detonation is formed only when high-pressure waves pass into a narrow part of the channel in the direction of the incident wave movement due to wave interference.

References

  1. Сычев АИ. Волна детонации в системе жидкость–пузырьки газа. Физика горения и взрыва. 1985;21(3):103–110. EDN: zjirob
    Sychev AI. Detonation waves in a liquid-gas bubble system. Combust Explos Shock Waves. 1985;21:365–372. DOI: 10.1007/BF01463860
  2. Сычев АИ, Пинаев АВ. Самоподдерживающаяся детонация в жидкостях с пузырьками взрывчатого газа. Прикладная механика и техническая физика. 1986;27(1):133–138. EDN: zwicll
    Sychev AI, Pinaev AV. Self-sustaining detonation in liquids with bubbles of explosive gas. J Appl Mech Tech Phys. 1986;27:119–123. DOI: 10.1007/BF00911132
  3. Сычев АИ. Управляемая пузырьковая детонация. Теплофизика высоких температур. 2019;57(2):291–297.
    DOI: 10.1134/S0040364419020224
    Sychev A I. Controlled Bubble Detonation. High Temperature. 2019;57(2):263–268. DOI: 10.1134/S0018151X19020214
  4. Лепихин СА, Галимзянов МН, Гималтдинов ИК. Инициирование детонационных волн в каналах переменного сечения, заполненных жидкостью с пузырьками горючего газа. Теплофизика высоких температур. 2010;48(2):234–240. EDN: lojhrl
    Lepikhin SA., Galimzyanov MN, Gimaltdinov IK. Initiation of detonation waves in channels of variable cross section filled with liquid with combustible gas bubbles. High Temperature. 2010;48:215–221. DOI: 10.1134/S0018151X10020124
  5. Гималтдинов ИК, Гималтдинова АА, Кочанова ЕЮ. Распространение детонационных волн в неоднородной по объемному содержанию пузырьковой жидкости. Инженерно-физический журнал. 2021;94(6):1538–1544. EDN: qibwoo
    Gimaltdinov IK, Gimaltdinova AA, Kochanova EY. Propagation of Detonation Waves in a Bubble Liquid with Inhomogeneous Distribution of Volume Content. J Eng Phys Thermophy. 2021;94:1504–1510. DOI: 10.1007/s10891-021-02430-6
  6. Кедринский ВК, Маслов ИВ, Таратута СП. Структура волнового поля в активных пузырьковых системах в ударных трубах со «скачками» сечений. Прикладная механика и техническая физика. 2002;43(2):101–109. EDN: ooaoed
    Kedrinsky VK, Maslov IV, Taratuta SP. Wave-field structure in active bubble systems in shock tubes with ”discontinuities“ in cross section. Journal of Applied Mechanics and Technical Physics. 2002;43(2):256–263. EDN: erakzv
  7. Нигматулин РИ. Динамика многофазных сред. Часть 1. М. : Наука; 1987. 464 с.
    Nigmatulin RI. Dynamics of Multiphase Media. Vol. 1. Hemisphere, N.Y.; 1990. 532 p.
  8. Гималтдинов ИК, Кочанова ЕЮ. Условия фокусировки волны давления в пузырьковом клине. Акустический журнал. 2020;66(4):351–356. DOI: 10.31857/S0320791920040024
    Gimaltdinov IK, Kochanova EY. Conditions of Pressure Wave Focusing in a Bubbly Wedge. Acoust. Phys. 2020;66:339–343. DOI: 10.1134/S1063771020040028
  9. Гималтдинов ИК, Родионов АС, Кочанова ЕЮ. Детонация газожидкостной смеси при интерференции волн на наклонной границе. Физика горения и взрыва. 2023;59(3):36–43.
    Gimaltdinov IK, Rodionov AS, Kochanova EYu. Detonation of a gas-liquid mixture under wave interference on an inclined boundary. Physics of combustion and explosion. 2023;59(3):36–43 (in Russian). DOI: 10.15372/FGV20230303
  10. Самарский АА, Попов ЮП. Разностные методы решения задач газовой динамики. Учебное пособие. 3-е изд., доп. М.: Наука. Гл. ред. физ.-мат. лит. 1992. 424 с.
    Samarsky AA, Popov YuP. Different methods for solving gas dynamics problems. Textbook. 3rd ed. M.: Science. Ch. Ed. physical. Lit. 1992. 424 p (in Russian).