ISSN 2658–5782
DOI 10.21662
Electronic Scientific Journal


© Институт механики
им. Р.Р. Мавлютова
УФИЦ РАН


Vereshchagin A.S., Kazanin I.V., Zinovyev V.N., Fomin V.M. Analysis of a multiphase model of gas mixture flow through a layer of microspheres under conditions of selective extraction of components. Multiphase Systems. 2025;20(2):60–67 (in Russian).
2025. Vol. 20. Issue 2, Pp. 60–67
URL: http://mfs.uimech.org/mfs2025.2.009,en
DOI: 10.21662/mfs2025.2.009
Analysis of a multiphase model of gas mixture flow through a layer of microspheres under conditions of selective extraction of components
A.S. Vereshchagin 🖂, I.V. Kazanin, V.N. Zinovyev, V.M. Fomin
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, Novosibirsk

Abstract

A mathematical single-speed, single-temperature model of non-stationary gas mixture flow through a porous medium of microspheres with a dispersed distribution by physical and geometric parameters is presented. For a system of quasi-linear partial differential equations describing the model, its hyperbolicity is proved and an estimate for the eigenvalues is given. Dimensionless criteria responsible for the gas mixture flow through a stationary layer of microspheres under conditions of selective gas permeability are derived and described. An analytical solution to the stationary one-dimensional problem of binary mixture flow is derived, and the results of a numerical experiment of two problems are presented within the framework of the problem of gas mixture separation in a non-stationary mode.

Keywords

helium,
microspheres,
natural gas,
membranes,
extraction

Article outline

The aim of the work. The Russian helium production potential is concentrated in the territory of Eastern Siberia and the Far East, where more than 30 helium-containing gas fields with a high helium content (0.2-0.8%) have been discovered. The original method of separating gas mixtures based on the selective permeability of the shell of hollow glass microspheres proposed by the authors can be used to separate helium from natural gas. The main objective of this work is to create a basis for a parametric study of a non-stationary gas separation process based on the selective permeability of hollow glass microspheres with respect to helium and other gases.

Methods. Using the approaches of multiphase media mechanics, a mathematical model of the flow of a binary gas mixture through a porous layer of hollow selectively permeable microspheres is developed, taking into account their dispersion distribution by parameters. A quasi-linear system of partial differential equations in a one-dimensional approximation describing the model is examined for characteristics and its type is determined. By non-dimensionalizing the equations, the main dimensionless complexes describing the non-stationary flow of a binary gas mixture through a porous layer of microspheres are obtained. To test the numerical solutions, an analytical solution is found for the stationary one-dimensional problem of binary gas mixture flows through a porous layer. Using the WENO difference scheme, a test calculation is performed for two problems of binary gas mixture flow through an adsorber:

  1. the concentration wave propagates in the direction of gas flow (load wave), while the microspheres will be saturated with the target gas, and the mixture will be depleted (microsphere saturation stage);
  2. the concentration wave propagates against the direction of gas flow (unload wave), while the adsorbent is already saturated with the target gas and it will be released at an increased rate at the wave front (microsphere regeneration mode).

Results. Based on preliminary studies, a mathematical model of non-stationary gas mixture flow through a porous medium of microspheres with a dispersed distribution of physical and geometric parameters has been developed. The model is single-temperature and single-velocity, and the layer resistance is described by the Forchheimer filtration law. The dependence of the viscosity coefficient and the permeability coefficient of the microsphere shell on temperature is taken into account, and the Wilke formula is used to calculate the viscosity of the mixture.

It is shown that the system of quasi-linear differential equations describing the model is of a hyperbolic type. It is shown that in the case of a developed flow it always has different actual characteristic directions.

Dimensionless criteria responsible for the flow of a gas mixture through a stationary layer of microspheres under conditions of selective gas permeability are obtained and described. Three structural parameters determining the geometry of the backfill were obtained, the existence of four parameters depending only on the physical characteristics of the media was shown, and 11 dimensionless complexes characterizing the gas flow were obtained.

An analytical solution was obtained for the stationary one-dimensional problem of filtration of a binary gas mixture through a layer of microspheres in the general case and in the case of frozen viscosity.

A numerical solution was obtained for two non-stationary problems of air-helium mixture flow through an adsorber filled with silica microspheres, taking into account the selective permeability of helium into the microspheres.

Conclusions. The obtained modeling results show that the process of helium mixture outflow from the adsorber occurs with a constant increase in the helium concentration in the mixture from the value that was established in the adsorber at the beginning of the pumping process. The presented experiment shows that the effect of increasing concentration is observed, however, it is necessary to conduct further parametric research of the cyclic process of filling and pumping out the adsorber to determine possible optimal target values of the mixture separation process in a non-stationary mode.

References

  1. Якуцени ВП. Сырьевая база гелия в мире и перспективы развития гелиевой промышленности. Нефтегазовая геология. Теория и практика. 2009;4(2):1–24.
    Yakutseni VP. The raw material base of helium in the world and prospects for the development of the helium industry. Oil and gas geology. Theory and practice. 2009;4(2):1–24 (in Russian). EDN: knnunf
  2. Зиновьев ВН, Казанин ИВ, Пак АЮ, Верещагин АС, Лебига ВА, Фомин ВМ. Проницаемость полых микросферических мембран по отношению к гелию. Инженерно-физический журнал. 2016;89(1):24–36. EDN: vhtdtf
    Zinoviev VN, Kazanin IV, Pak AYu, Vereshchagin AS, Lebiga VA, Fomin VM. Permeability of hollow microspherical membranes to helium. Journal of Engineering Physics and Thermophysics. 2016;89(1):25–37. DOI: 10.1007/s10891-016-1350-7
  3. Баренблатт ГИ, Лобковский ЛИ, Нигматулин РИ. Математическая модель истечения газа из газонасыщенного льда и газогидратов. Доклады Академии Наук. 2016;470(4):458–461. DOI: 10.7868/s0869565216280148
    BarenblatT GI, Lobkovsky LI, Nigmatulin RI. A mathematical model of gas outflow from gas-saturated ice and gas hydrates. Doklady Earth Sciences. 2016;470(2):1046–1049. DOI: 10.1134/S1028334X16100019
  4. Нигматулин РИ. Динамика многофазных сред. Часть 1. М. : Наука; 1987. 464 с.
    Nigmatulin RI. Dynamics of Multiphase Media. Vol. 1. Hemisphere, N.Y.; 1990. 532 p.
  5. Верещагин АС, Казанин ИВ, Зиновьев ВН, Фомин ВМ. Численное моделирование обогащения воздушно-гелиевой смеси бифункциональным сорбентом на основе стеклянных микросфер. Прикладная механика и техническая физика. 2022;63(5):3–19. DOI: 10.15372/PMTF20220501
    Vereshchagin AS, Kazanin IV, Zinoviev VN, Fomin VM. Numerical simulation of enrichment of the air-helium mixture with a bifunctional sorbent based on glass microspheres. Journal of Applied Mechanics and Technical Physics. 2022;63(5):731–745. DOI: 10.1134/S0021894422050017
  6. Верещагин АС, Казанин ИВ, Зиновьев ВН, и др. Математическая модель проницаемости микросфер с учетом их дисперсионного распределения. Прикладная механика и техническая физика. 2013;54(2):88–96. EDN: rjzesb
    Vereshchagin AS, Kazanin IV, Zinoviev VN, et al. Mathematical model of permeability of microspheres with allowance for their size distribution. Journal of Applied Mechanics and Technical Physics. 2013;54(2):243–250. DOI: 10.1134/S0021894413020090
  7. Верещагин АС, Фомин ВМ, Зиновьев ВН, Казанин ИВ, Пак АЮ, Лебига ВА. Исследование процесса поглощения гелия микросферами и композитным сорбентом на их основе. Прикладная механика и техническая физика. 2021;62(3):60–70. DOI: 10.15372/PMTF20210306
    Vereshchagin AS, Fomin VM, Zinoviev VN, Kazanin IV, Pak AYu, Lebiga VA. Investigation of helium absorption by microspheres and composite sorbent on their basis. Journal of Applied Mechanics and Technical Physics. 2021;62(3):401–410. DOI: 10.1134/S0021894421030068
  8. Верещагин АС, Зиновьев ВН, Казанин ИВ, Пак АЮ, Лебига ВА, Fomin VM. Модель адсорбции гелия и паров воды пористым композитным сорбентом на основе микросфер. Доклады Академии Наук. Физика. Техн. науки. 2020;490(1):18–23. DOI: 10.31857/S2686740020010216
    Vereshchagin AS, Zinovyev VN, Kazanin IV, Pak AY, Lebiga VA, Fomin VM. Model of helium and water vapor adsorption by a microsphere-based porous composite sorbent. Doklady Physics. 2020;65(2):46–50. DOI: 10.1134/S1028335820020093
  9. Голубев ИФ. Вязкость газов и газовых смесей. М. : Физматгиз. 1959. 375 с.
    Golubev I.F. Viscosity of gases and gas mixtures. M.:Fizmatgiz. 1959. 375 p (in Russian).
  10. Wilke CR. A viscosity equation for gas mixtures. Journal of Chemical Physics. 1950;18(4):517–519. DOI: 10.1063/1.1747673
  11. Barrer RM. Diffusion in and through solids. Reprint with corr. Cambridge: Univ. Press. 1951. 464 p.
  12. Chi-Wang S. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws: NASA/CR-97-206253. ICASE Report No 97-65. Institute for Computer Applications in Science; Engineering NASA Langley Research Center. 1997. 80 p.
  13. Фролов МВ, Верещагин АС, Казанин ИВ. Определение гелиевой проницаемости кремнезёмных микросфер. Челябинский физико-математический журнал. 2024;9(2):311–323.
    Frolov MV, Vereshchagin AS, Kazanin IV. Determination of helium permeability of silica microspheres. Chelyabinsk Physics and Mathematics Journal. 2024;9(2):311–323 (in Russian). DOI: 10.47475/2500-0101-2024-9-2-311-323