ISSN 2658–5782
DOI 10.21662
Electronic Scientific Journal





© Институт механики
им. Р.Р. Мавлютова
УФИЦ РАН

Яндекс.Метрика web site traffic statistics

Borisoglebskiy I.K., Metusova M.V., Mikhaylenko C.I. The dependence of the Ranque–Hilsch effect on the cold outlet geometry. Multiphase Systems. 13 (2018) 3. 52–58.
2018. Vol. 13. Issue 3, Pp. 52–58
URL: http://mfs.uimech.org/mfs2018.3.008
DOI: 10.21662/mfs2018.3.008
The dependence of the Ranque–Hilsch effect on the cold outlet geometry
Borisoglebskiy I.K., Metusova M.V., Mikhaylenko C.I.∗∗
Ufa State Aviation Technical University, Ufa
∗∗Mavlyutov Institute of Mechanics, UFRC RAS, Ufa

Abstract

The effect of such parameters of the cold outlet nozzle of the counter flow vortex tube as the length and widening angle on temperature separation is investigated. Mathematical model of gas dynamics is written with viscosity component. Computational simulation is performed in the OpenFOAM package, using the sonicFoam solver. It is shown that the temperature of the exhaust air decreases along the cold exit nozzle. The presence of the angle of widening of the nozzle affects the amount of cooling, but is not the root cause of the effect. The nonmonotonic dependence of the temperature of the exhaust gas on the length of the cold exit nozzle is demonstrated. When studying the effect on the temperature of the widening angle of a cold-exit nozzle at a fixed length, it was shown that at a fixed volume flow rate, a pronounced non-monotonic dependence is observed, while at a constant pressure drop, there is no non-monotony down to the maximum considered angle.

Keywords

mathematical modeling,
gas dynamics,
vortex tube,
Ranque–Hilsch effect,
OpenFOAM,
turbulence

Article outline

In the paper, the influence of the geometric parameters of the cold outlet nozzle of a counter flow vortex tube on the result of the Ranque–Hilsch effect is studied using a mathematical modeling. The investigated parameters are the length and angle of widening of the channel. All other geometry parameters of a vortex tube remains unchanged.

Computational experiments are calculated in an OpenFOAM environment. The sonicFoam solver is used to simulate the sound waves with shock waves. Such flow regimes are realized in the channel of the vortex tube.

The influence of turbulent pulsations on the result of the solution is smoothed as follows. The measured value (temperature, pressure, speed) is averaged over time over the last few calculated steps. Averaging over a certain cross section is also carried out, the values of which are calculated using the surfaceCut utility. The behavior of temperature and pressure at the cold outlet, as well as in the cross section of the transition from the channel of the main pipe to the cold exit nozzle, is investigated. In addition, calculations are performed under different boundary conditions at the inlet: constant volume flow rate and constant pressure.

The following results were obtained. The geometrical parameters of the nozzle of the cold exit of the vortex tube have a significant impact on the production of cold air. It is shown that the condition of constant inlet pressure gives a better result compared with a fixed volumetric flow rate. It is also shown that the main cooling of the exhaust air takes place directly in the cold outlet nozzle, regardless of its geometry.

References

  1. Finko V.E. Cooling and condensation of a gas in a vortex flow // Soviet Physics Technical Physics. 1983. V. 28(9). Pp. 1089–1093.
  2. Bruno T.J. Laboratory applications of the vortex tube // Journal of Chemical Education. 1987. V. 64. Pp. 987–988.
    (DOI: 10.1021/ed064p987)
  3. Baz A., Gilheany J., Kalvitas A. Feasibility of vortex tube assisted environmental control of an unde rwater research habitat // Ocean Eng. 1988. V. 15(1). Pp. 33–54.
    (DOI: 10.1016/0029-8018(88)90018-2)
  4. Riu K, Kim J, Choi IS. Experimental investigation on dust separation characteristics of a vortex tube // Trans JSME Ser B: Therm Fluid Mech. 2004. V. 47(1). Pp. 29–36.
    (DOI: 10.1299/jsmeb.47.29)
  5. Martin R.W., Zilm K.W. Variable temperature system using vortex tube cooling and fiber optic temperat ure measurement for low temperature magic angle spinning NMR // J. Magn. Reson. 2004. V. 168(2). Pp. 202–209.
    (DOI: 10.1016/j.jmr.2004.03.002)
  6. Kumar A., Vivekanand, Subudhi S. Cooling and dehumidification using vortex tube // Applied Thermal Engineering. 2017. Vol. 122. Pp. 181–193.
    (DOI: 10.1016/j.applthermaleng.2017.05.015)
  7. Гуцол А.Ф. Эффект Ранка // Успехи физических наук. 1997. Т. 167, №6. С. 665–687.
    (DOI: 10.1070/PU1997v040n06ABEH000248)
  8. Eiamsa-ard S., Promvonge P. Review of Ranque–Hilsch effects in vortex tubes // Renewable and Sustainable Energy Reviews. 2008. V. 1. Pp. 1822–1842.
    (DOI: 10.1016/j.rser.2007.03.006)
  9. Subudhi S., Mihir S. Review of Ranque–Hilsch vortex tube experiments using air // Renewable and Sustainable Energy Reviews. 2015. Vol. 52. Pp. 172–178.
    (DOI: 10.1016/j.rser.2015.07.103)
  10. Bo Zhang, Xiangji Guo, Zhuqiang Yang Analysis on the fluid flow in vortex tube with vortex periodical oscillation characteristics // International Journal of Heat and Mass Transfer. 2016. V. 103. Pp. 1166–1175.
    (DOI: 10.1016/j.ijheatmasstransfer.2016.08.063)
  11. Majidi D., Alighardashi Н., Farhadi F., Best vortex tube cascade for highest thermal separation // International Journal of Refrigeration. 2017. V. 85. Pp. 282–291.
    (DOI: 10.1016/j.ijrefrig.2017.10.006)
  12. Moraveji A.,Toghraie D. Computational fluid dynamics simulation of heat transfer and fluid flow characteristics in a vortex tube by considering the various parameters // Int.J. of Heat and Mass Transfer. 2017. V. 113. Pp. 432–443.
    (DOI: 10.1016/j.ijheatmasstransfer.2017.05.095)
  13. Hamdan M.O., Al-Omari S.-A., Oweimer A.S. Experimental study of vortex tube energy separation under different tube design // Experimental Thermal and Fluid Science. 2018. V. 91. Pp. 306–311.
    (DOI: 10.1016/j.expthermflusci.2017.10.034)
  14. Thakare H.R., Monde A., Parekh A.D. Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review // Renewable and Sustainable Energy Reviews. 2015. V. 52. Pp. 1043–1071.
    (DOI: 10.1016/j.rser.2015.07.198)
  15. Mohammadi S., Farhadi F.Experimental and numerical study of the gas–gas separation efficiency in a Ranque–Hilsch vortex tube // Separation and Purification Technology. 2014. V. 138. Pp. 177–185.
    (DOI: 10.1016/j.seppur.2014.10.022)
  16. Attalla M., Ahmed H., Ahmed M.S., El-Wafa A.A. An experimental study of nozzle number on Ranque–Hilsch counter-flow vortex tube // Experimental Thermal and Fluid Science. 2017. V. 82. Pp. 381–389.
    (DOI: 10.1016/j.expthermflusci.2016.11.034)
  17. Марьин Д.Ф., Михайленко К.И. Численное исследование механизма возникновения эффекта Ранка--Хилша в канале вихревой трубы // Вестник Нижегородского университета им. Н.И. Лобачевского. 2011. № 4–3. С. 977–-978.
  18. Марьин Д.Ф., Михайленко К.И., Хазиев Л.Х. Прямое численное моделирование эффекта ранка // В сборнике: Параллельные вычислительные технологии (ПаВТ'2011) Труды международной научной конференции. 2011. С. 539–547.
    (URL: http://omega.sp.susu.ru/books/conference/PaVT2011/short/197.pdf)
  19. Михайленко К.И. Зависимость перераспределения температуры в вихревой трубе от геометрии завихрителя // Труды Института механики им. Р.Р. Мавлютова Уфимского научного центра РАН. 2017. Т. 12, № 2. С. 174–179.
    (DOI: 10.21662/uim2017.2.026)
  20. Михайленко К.И. К моделированию вихревой трубы: подготовка гексагональной сетки для вычислительных экспериментов в среде OpenFOAM // Труды Института механики им. Р.Р. Мавлютова УНЦ РАН. 2016. Т. 11, № 1. С. 112–118.
    (DOI: 10.21662/uim2016.1.017)