ISSN 2658-5782

Том 18 (2023), № 4, с. 277-279

Многофазные системы

http://mfs.uimech.org/2023/pdf/mfs2023.4.081.pdf DOI: 10.21662/mfs2023.4.081

Получена: 15.09.2023 Принята: 10.11.2023

Процессы образования гравитационных внутренних волн за телом, движущимся в двумерной и трехмерной стратифицированной вязкой жидкости

Матюшин П.В.

Институт Автоматизации Проектирования РАН, Москва

Проведено математическое моделирование равномерного движения квадрата и диска со скоростью *U* в покоящейся линейно стратифицированной по плотности несжимаемой вязкой жидкости вдоль горизонтальной оси Z симметрии тела справа налево [1]. Показано, как на пустом месте *в силу* гравитационной и сдвиговой неустойчивостей формируются полуволны -1 и 1 (Рис. 1, 3), первая из которых со временем формирует след за телом, а вторая начинает череду внутренних полуволн над следом (Рис. 1–3). Пусть T_b — период плавучести жидкости, тогда первая часть механизма формирования внутренних волн (МФВВ1) будет одинаковой для двухмерного (2D) и трехмерного (3D) случаев: «Каждые $T_h/2$ новые полуволны $k \, u - k$ рождаются над местом Q старта тела, где k = 1, 2, 3, ...;точка Q находится на пересечении черной вертикальной прямой и оси Z, совпадающей с нижней границей рисунков. Нечётные и чётные полуволны *k* со временем становятся впадинами и гребнями, соответственно.

Моделирование

Для математического моделирования решалась система уравнений Навье-Стокса в приближении Буссинеска [2], записанная как в декартовой (Z, X), так и в цилиндрической (Z = Z, X = $R \cdot \cos \varphi$, $Y = R \cdot \sin \varphi$) системах координат. Решение системы находилось при помощи численного метода МЕРАНЖ [3] на вычислительных ресурсах Межведомственного суперкомпьютерного центра Российской академии наук (МСЦ РАН). Длина стороны квадрата и диаметр диска равны d. Толщина диска $h = 0.76 \cdot d$. Эта задача характеризуется четырьмя параметрами: T_b , $Fr = U \cdot T_b / (2\pi \cdot d) - U \cdot T_b / (2\pi \cdot d)$ внутреннее число Фруда, $Re = U \cdot d / v$ — число Рейнольдса, $Sc = v/\kappa = 709.2 - число Шмидта, где$ v и к — коэффициенты кинематической вязкости жидкости и диффузии соли. Пусть $T = \tau / T_b$, где τ реальное время, прошедшее с начала старта тела.

МФВВ2 для квадрата

«Каждые T_b из левой части осевой полуволны —1 формируется новый вихрь $k^{-1} \equiv -1(k)$ (осевая часть гребня k), где k — чётное число (Рис. 1,I)». Сердцевины полуволн на Рис. 1(\mathfrak{s} - \mathfrak{d}),I показаны красными штриховыми линиями с красными номерами.

[©] Институт механики им. Р.Р. Мавлютова УФИЦ РАН

[©] Институт проблем механики им А.Ю. Ишлинского РАН

[©] Матюшин Павел Владимирович, pmatyushin@mail.ru

Рис. 1. Мгновенные линии тока в системе координат, связанной с жидкостью, при Fr = 0.3, Re = 50, $T_b = 2\pi$ с около квадрата со стороной d (I) и диска толщиной $0.76 \cdot d$ (II) (в вертикальной плоскости X - Z): а-д – T = 0.02, 0.28, 0.55, 1.55, 2.55

Рис. 2. Линии тока около квадрата при $Fr=0.3, Re=50, \, T_b=2\pi$ с, T=2.55

Черными номерами на Рис. 1*в*–*д*,I обозначаются вихревые ячейки, появившиеся в общем поле течения А около квадрата. Со временем картина течения становится похожей на шахматную доску (Рис. 2). Так на Рис. 1*д*,I и 2 виден пятилистник следа, состоящий из вихревых ячеек 2^{-1} , 4^{-1} и -1и полуячеек -5^{-1} и -3^{-1} , которые выделены на Рис. 1*д*, I чёрной штриховой линией. Над этим пятилистником виден первый ряд вихревых ячеек: 1, 3^1 , 5^1 , -4^1 , -2^1 . Выше первого ряда расположился второй ряд вихревых ячеек: 2, 4^2 , -3^2 , и т.д. В отличие от *2D-случая* в *3D-случае* в картинах линий тока в плоскости X - Z на Рис. 1, II такого шахматного расположения вихрей не наблюдается, отличается время формирования полуволн и отсутствуют осевые части гребней.

Для визуализации 3d вихревых структур течения используются изоповерхности функции β (мнимая часть двух комплексно сопряженных собственных значений тензора градиента скорости [4]). В двухцветной «β+»-визуализации [1] полуволны окрашиваются двумя разными цветами при помощи знака фитой компоненты завихренности (rot \mathbf{v}_{φ}) (Рис. 3a, e, III), где \mathbf{v} — вектор скорости жидкости. Для « β —»-визуализации [1][1] выводятся на экран только полуволны, для которых (rot $\mathbf{v}_{\varphi} < 0$ (Рис. 36, III). В *2D-случае* « β +»-визуализация кроме полуволн показывает еще и зону блокировки перед квадратом и рециркуляционную зону сразу за квадратом (Рис. 36, e, I), а также усложняет **МФВВ2(2D**, β +): «*Каждые* T_b около точки Q рядом друг с другом зарождаются два вихря -3(k) и -1(k)(осевые части гребня k), где k — чётное число».

МФВВ2(3D, $\beta+$) для диска

В 3D-случае сердцевины полуволн k u –k за диском похожи на деформированные **полукольца**, которые падают на точку Q [1][1]. «Каждые T_b для каждого нечётного k у оси Z формируется вихревая петля –k, состоящая из нитей f_k и полукольца –k, на которое потом садится чётное полукольцо

(k + 1). При этом нечетное полукольцо -k сначала превращается в полукруг (Рис. 36,III), а потом в кольцо (Рис. 36,III)». Таким образом, при X > 0и T > 0 в течение каждого $\Delta T = 1$ формируется новая внутренняя волна, состоящая из впадины k и гребня (k + 1), где k — нечётное число. Полукольцо -k становится осевой частью гребня (k + 1). Осевые части гребней оказываются связанными друг с другом в цепочку нечетными нитями.

Список литературы

- [1] Матюшин П.В. Формирование пространственных внутренних волн за телом, двигающимся в стратифицированной вязкой жидкости // Известия РАН. Механика жидкости и газа. 2023. № 4. С. 117-130.
- [2] Boussinesq J. Essai sur la thйorie des eaux courantes // Comptes rendus de l'Acadйmie des Sciences. 1877. V. 23. Р. 1–680.
- [3] Белоцерковский О.М., Гущин В.А., Коньшин В.Н. Метод расщепления для исследования течений стратифицированной жидкости со свободной поверхностью // Ж. вычислительной математики и математ. физики. 1987. Т. 27. № 4. С. 594–609.
- [4] Jeong J., Hussain F. On the identification of a vortex // J. Fluid Mech. 1995. V. 285. P. 69–94.

Рис. 3. Вихревая структура течения жидкости при Fr = 0.3, Re = 50, $T_b = 2\pi$ с около квадрата (I) и диска (II-III): а-в – изолинии β + с шагами 0.01, 0.2, 0.1 и 0.01 при T = 0.28, 0.8, 1.05 (I) и 0.005, 0.01, 0.01 (в вертикальной плоскости X - Z) (II) и изоповерхности β + = ±0.0052, β - = 0.005, β + = ±0.005 (III) при T = 0.28, 0.8, 1. **S** – боковая полуволна, **f** – нить, **r** – кольцевой вихрь вихревой оболочки следа **0**, **R** – рециркуляционная область следа [1][1]