ISSN 2658-5782

Том 18 (2023), № 3, с. 222-224

Многофазные системы

http://mfs.uimech.org/2023/pdf/mfs2023.3.064.pdf DOI: 10.21662/mfs2023.3.064

Получена: 15.09.2023 Принята: 10.11.2023

Тонкие структуры картины быстрого переноса вещества капли, свободно падающей в глубокую жидкость, в интрузивном и импактном режимах¹

Ильиных А.Ю.

Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского РАН, Москва

Методами высокоскоростной видеорегистрации экспериментально прослежена эволюция тонкой картины переноса вещества при импакте свободно падающей капли в покоящейся принимающей жидкости в итрузивном, импактном и переходном режимах, которые задаются энергетическими параметрами задачи. Проанализированы картины течения в боковой и фронтальной проекциях. Основное внимание в работе уделено тонкоструктурным механизмам переноса вещества капли. Рассматриваются макроскопические механизмы переноса энергии течением со скоростью и и волнами с групповой скоростью cg, а также микроскопический атомно-молекулярный перенос (медленный диссипативно-диффузионный, и быстрый, обусловленный уничтожением свободных поверхностей контактирующих жидкостей и конверсии доступной потенциальной поверхностной энергии

© Институт проблем механики им А.Ю. Ишлинского РАН

© Ильиных Андрей Юрьевич, ilynykh@ipmnet.ru

(ДППЭ) в другие формы [1]). Быстрые процессы преобразования ДППЭ в другие формы на кольцевой границе области слияния жидкостей способствуют формированию тонких струек и генерации капиллярных волн в принимающей жидкости [2].

В число размерных параметров задачи входят условия эксперимента (диаметр $D = 0.42 \div$ 0.45 см и скорость в момент контакта U = $0.34 \div 4.3$ м/с (высота свободного падения h = $1 \div 200$ см), ускорение свободного падения g и физические свойства взаимодействующих сред: плотности $\rho_{d,t,e}$ кинематические $v_{d,t,e}$ и динамические $\eta_{d.t.e}$ вязкости, коэффициенты поверхностного натяжения σ_d^a , σ_t^a и их отношения, где индекс *d* соответствует капле, *t* — принимающей жидкости, е — среде, в которой происходит взаимодействие (воздух). В работе оценивались кинетwidth=4.1563in,height=1.3854inические E_k = $MU^2/2$ и поверхностные $E_{\sigma} = \sigma S_d$ энергии капель. Температуры жидкостей и среды считаются равными. Набор безразмерных параметров задачи включает числа Рейнольдса 1450 < Re < 18000, Фруда 2.8 < Fr < 450, Бонда Во = 2.39, Онезорге Oh = 0.0018, Вебера 6.7 < We < 1100.

Система уравнений задачи включает уравне-

¹Работа выполнена при финансовой поддержке Российского научного фонда (проект 19-19-00598-П «Гидродинамика и энергетика капли и капельных струй: формирование, движение, распад, взаимодействие с контактной поверхностью», https://rscf.ru/project/19-19-00598/).

[©] Институт механики им. Р.Р. Мавлютова УФИЦ РАН

ния переноса массы, импульса и энергии, а также потенциал Гиббса с дополнительными членами для поверхностного и приповерхностного слоев [3]. Поверхностная энергия равномерно распределена в тонком слое толщиной порядка размера молекулярного кластера $\delta_{\sigma} \sim 10^{-6}$ см. При слиянии контактирующих жидкостей за время $\Delta t_{\sigma} = \delta_{\sigma}/U \sim 10^{-8}$ с происходит аннигиляция приповерхностных слоев с трансформацией высвобожденной энергии (малой по значению, но большой по плотности) в другие формы — в выражении для потенциала Гиббса $dg_s = -sdT + VdP + \sigma dS_b + \mu_n dN_n$ исчезает дополнительный член σdS_b , зависящий от коэффициента поверхностного натяжения, дифференциала площади контактируемой поверхности.

Опыты выполнены на стенде ТБП, входящем в состав комплекса «УНУ ГФК ИПМех РАН». Капли чистой воды и водных растворов перманганата калия, медного купороса, железного купороса, ализариновых чернил, поваренной соли или пищевой соды падали в стеклянный бассейн, заполненный частично дегазированной водопроводной водой. На основе анализа большого числа проведенных опытов в широком диапазоне значений высот (скоростей в момент контакта, кинетических энергий) свободно падающих капель картины переноса вещества разделяются на режимы, которые определяются отношением кинетической и потенциальной энергии: интрузивный для $E_k < E_{\sigma}$, режим всплеска при $E_k > E_{\sigma}$ и переходный $E_k \approx E_{\sigma}$.

Для интрузивного режима, который наблюдается при малых контактных скоростях и, характерно плавное втекание вещества капли с образованием кольцевой тонкоструктурированной области с масштабами петлистых структур $\Delta l_{\varphi} = 0.5$ и 0.3 мм у поверхности принимающей жидкости (Рис. 1, а), а в толще жидкости — компактного объема (интрузии), опережающего формирование газовой полости (каверны) на время 10-12 мс (Рис. 1, б, в) [4]. Первичный контакт происходит без образования брызг и выраженной пелены. Группы кольцевых капиллярных волн наблюдаются как на поверхности остатка погружающейся капли $\lambda_d = 0.3 \div 0.5$ мм, так и на поверхности принимающей жидкости $\lambda_d =$ $0.5 \div 0.8$ мм (от области слияния к вершине капли и радиально). Каверна конической и полусферической формы продвигается в толщу жидкости и оттесняет интрузию от свободной поверхности. Интрузия трансформируется в сферический вихрь с примыкающими петлистыми структурами, радиально сосредоточенными в кольцевой структурированной области на поверхности принимающей жидкости.

Для импактного режима слияния характерны большие скорости капель, каверна начинает формироваться практически с момента первичного контакта, вслед за тонкой переходной областью мелкомасштабных возмущений, включающих вещество капли, которое также распределяется по поверхности жидкости в виде вихрей, отдельных волокон, образующих линейчатые и сетчатые картины на поверхности каверны и венца и, далее, вытянутых петлистых структур. Волокнистый характер распределения пигмента сохраняется в ходе последующей эволюции течения [5]. Степень выраженности отдельных структурных компонентов течений зависит от параметров задачи, в частности контактной скорости капли, коэффициента диффузии, относительной разности физических величин (вязкость, плотность, коэффициент поверхностного натяжения).

В области перехода от режима интрузии к импактному при сохранении выраженной опережающей интрузии сокращается время задержки начала формирования каверны. В форме дна интрузии выражены шероховатости размахом до $\Delta r_i \sim 0.1$ мм.

Рис. 1. Картина течений в режиме интрузии (U = 0.34 м/с, $E_{\sigma} = 4$ мкДж, $E_k = 2.24$ мкДж): а) радиальные петли (вид сверху), б, в) трансформация интрузии в вихревое кольцо при импакте капли чернил и раствора соды

Рис. 2. Картина течений в режиме импакта (U = 3.1 м/с, $E_k = 200$ мкДж, $E_{\sigma} = 4.2$ мкДж): а) сетчатая картина распределения вещества (вид сверху), б, в) тонкий переходный слой на границе каверны

Начальная скорость формирования каверны и ее максимальные размеры увеличиваются с увеличением контактной скорости капли, при этом скорость интрузии практически не меняется, что приводит к опережению фронта каверны и трансформации интрузии в тонкий переходный слой, покрывающий поверхность каверны. Заострение дна каверны покрывает собственная окрашенная оболочка толщиной ~ 1.5 мм. Положение нижней кромки интрузии изменяется монотонно со временем: при большой высоте падения на всем интервале наблюдений, а при малых высотах — до момента начала интенсивного схлопывания каверны, прилегающий к поверхности интрузии.

Заключение

В капельных течениях проявляется действие нескольких механизмов передачи энергии с собственными временными и пространственными масштабами, как макроскопических — с течениями и гравитационно-капиллярными, так и микроскопических — диффузионных и быстрой конверсии ДППЭ в другие формы. Наиболее заметно действие конверсии ДППЭ при слиянии существующих и формировании новых свободных поверхностей. Различие картин течений в интрузивном и импактном режимах связано с особенностями действия механизмов переноса импульса и энергии в окрестности подвижной границы пятна контакта [5].

Список литературы

- [1] Чашечкин Ю.Д.Пакеты капиллярных и акустических волн импакта капли // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. Т. 1. № 94. С. 73–92.
- [2] *Чашечкин Ю. Д., Ильиных А. Ю.* Формирование системы наклонных петель в течениях импакта капли // Доклады РАН. 2021. Т. 499. № 1. С. 48–57.
- [3] Chashechkin Yu.D.Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation // Mathematics. 2021. V. 9. No. 586.
- [4] Чашечкин Ю. Д., Ильиных А. Ю. Задержка формирования каверны в интрузивном режиме слияния свободно падающей капли с принимающей жидкостью // ДАН. 2021. Т. 496. № 1. С. 45-50.
- [5] Chashechkin Yu.D., Ilinykh A. Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12, Iss.4, 374.