ISSN 2658-5782

Многофазные системы

http://mfs.uimech.org/2023/pdf/mfs2023.3.040.pdf DOI:10.21662/mfs2023.3.040

Получена: 15.09.2023 Принята: 10.11.2023

Волновые движения и структура течения в вязких сжимаемых средах¹

Очиров А.А., Чашечкин Ю.Д.

Институт проблем механики им. А.Ю. Ишлинского РАН, Москва

Введение

Волновые движения и структура течения в вязких сжимаемых среда Периодические движения жидкости очень разнообразны и многогранны. Эксперименты с высокой разрешающей способностью демонстрируют существование тонкой структуры на всех этапах периодических движений, возникающих в импакте капли [1]. Теоретические исследования показывают существование тонкой структуры в поверхностных течениях несжимаемых [2], [3] вязких сред. Настоящая работа посвящена исследованию периодических движений, возникающих в вязких слабосжимаемых средах.

Математическая формулировка задачи

Рассматривается двухслойная система вязких слабосжимаемых жидкостей в поле сил тяжести \mathbf{g} , верхняя из которых имеет меньшее значение равновесной плотности чем нижняя $\rho_{00}^a < \rho_{00}^o$. Здесь и

© Очиров Артем Александрович, otchirov@mail.ru

далее верхним индексом «o» обозначены величины, относящиеся к нижней жидкости, а индексом «a» - к верхней. Рассмотрение проводится в декартовой системе координат Oxz, в которой ось Ozнаправлена вертикально вверх, а ось Ox направлена вдоль поверхности раздела. Движение считается независящим от горизонтальной координаты y. Математическая формулировка задачи, определяющая поле скоростей $\mathbf{u}^{o,a}$, давление $P^{o,a}$, плотность $\rho^{o,a}$ записывается следующим образом:

$$z < \zeta: \quad \frac{\partial_t \mathbf{u}^o - \mathbf{v}^o \Delta \mathbf{u}^o + \frac{1}{\rho_{00}^o} \nabla P^o - \rho^o \mathbf{g} = 0,}{\partial_t \rho^o + \mathbf{u}^o \cdot \nabla \rho^o + \rho^o \operatorname{div} \mathbf{u}^o = 0}$$
(1)

$$\rho^{o} = \rho_{0}^{o}(z) \left(1 - \alpha_{P}^{o}(P^{o} - P_{0}^{o})\right), \quad \alpha_{P}^{o} = \frac{1}{\rho^{o}} \left(\frac{\partial \rho^{o}}{\partial P^{0}}\right)_{S}$$
(2)

$$z > \zeta: \quad \frac{\partial_t \mathbf{u}^a - \mathbf{v}^a \Delta \mathbf{u}^a + \frac{1}{\rho_{00}^a} \nabla P^a - \rho^a \mathbf{g} = 0,}{\partial_t \rho^a + \mathbf{u}^a \cdot \nabla \rho^a + \rho^a \operatorname{div} \mathbf{u}^a = 0}$$
(3)

$$\rho^{a} = \rho_{0}^{a}(z) \left(1 - \alpha_{P}^{a} \left(P^{a} - P_{0}^{a}\right)\right), \quad \alpha_{P}^{a} = \frac{1}{\rho^{a}} \left(\frac{\partial \rho^{a}}{\partial P^{a}}\right)_{S} \quad (4)$$

Здесь $v^{o,a}$ — кинематическая вязкость, а уравнения состояния (2), (4) записаны в предположении малых девиаций давления и плотности независящей от колебаний температуры и концентрации

¹Работа выполнена при финансовой поддержке РНФ (проект 19-19-00598-П, «Гидродинамика и энергетика капли и капельных струй: формирование, движение, распад, взаимодействие с контактной поверхностью», https://rscf.ru/project/19-19-00598/)

[©] Институт механики им. Р.Р. Мавлютова УФИЦ РАН

[©] Институт проблем механики им А.Ю. Ишлинского РАН

[©] Чашечкин Юлий Дмитриевич, yulidch@gmail.com

растворенных в жидкости солей. Обе среды предполагаются равномерно стратифицированными: $\rho_0^{o,a} = \rho_{00}^{o,a} \exp(-z/\Lambda^{o,a})$ с масштабами стратификации $\Lambda^{o,a}$. Основные уравнения гидродинамики (1) – (4) дополняются граничными условиями на границе раздела сред:

$$z = \zeta: \quad \frac{\partial_t \zeta + u^o \partial_x \zeta = w^o, \ \partial_t \zeta + u^a \partial_x \zeta = w^a,}{\mathbf{u}^o \cdot \mathbf{\tau} = \mathbf{u}^a \cdot \mathbf{\tau}}$$
(5)

$$P^{o} - 2\rho^{o} \mathbf{v}^{o} \mathbf{n} \cdot ((\mathbf{n} \cdot \nabla) \mathbf{u}^{o}) =$$

$$P^{a} - 2\rho^{a} \mathbf{v}^{a} \mathbf{n} \cdot ((\mathbf{n} \cdot \nabla) \mathbf{u}^{a}) - \sigma \operatorname{div} \mathbf{n}$$
(6)

$$\rho^{o} \mathbf{v}^{o} \left(\mathbf{\tau} \cdot \left(\left(\mathbf{n} \cdot \nabla \right) \mathbf{u}^{o} \right) + \mathbf{n} \cdot \left(\left(\mathbf{\tau} \cdot \nabla \right) \mathbf{u}^{o} \right) \right) = \rho^{a} \mathbf{v}^{a} \left(\mathbf{\tau} \cdot \left(\left(\mathbf{n} \cdot \nabla \right) \mathbf{u}^{a} \right) + \mathbf{n} \cdot \left(\left(\mathbf{\tau} \cdot \nabla \right) \mathbf{u}^{a} \right) \right)$$
(7)

$$\mathbf{n} = \frac{\nabla (z - \zeta)}{|\nabla (z - \zeta)|} = \left(\frac{-\partial_x \zeta}{\sqrt{1 + (\partial_x \zeta)^2}}, \frac{1}{\sqrt{1 + (\partial_x \zeta)^2}}\right),$$
$$\tau = \left(\frac{1}{\sqrt{1 + (\partial_x \zeta)^2}}, \frac{\partial_x \zeta}{\sqrt{1 + (\partial_x \zeta)^2}}\right)$$

Задача (1)–(7) решается методом разложения по малому параметру для малых колебаний. Линеаризованная задача позволяет получить дисперсионные соотношения, связывающие частоту периодических возмущений с волновым числом и другими параметрами задачи.

Решение задачи

Решение линеаризованной задачи (1) – (7) находится в виде периодических функций вида

$$\begin{pmatrix} u^{o,a} \\ w^{o,a} \\ \tilde{P}^{o,a} \\ \tilde{\rho}^{o,a} \\ \zeta \end{pmatrix} = \begin{pmatrix} U_m^{o,a} \left(\exp(ik_z^{o,a}z) + \Theta \exp(ik_l^{o,a}z) \right) \\ W_m^{o,a} \left(\exp(ik_z^{o,a}z) + \Theta \exp(ik_l^{o,a}z) \right) \\ P_m^{o,a} \left(\exp(ik_z^{o,a}z) + \Theta \exp(ik_l^{o,a}z) \right) \\ P_m^{o,a} \left(\exp(ik_z^{o,a}z) + \Theta \exp(ik_l^{o,a}z) \right) \\ A_m \end{pmatrix} \times \\ \times \exp(ik_x x - i\omega t)$$

$$(8)$$

В решении (8) отражено, что периодическое движение состоит из волновых и лигаментных компонентов. Волновые компоненты $k_z^{o,a}$ определяются регулярными решениями дисперсионного соотношения, а лигаментные компоненты $k_l^{o,a}$ определяются сингулярными решениями дисперсионных

соотношений:

$$\frac{\omega}{c^{o,a2}\Lambda^{o,a2}} \left[\omega \left(v^{o,a} (k_x^2 + k_z^{o,a2}) - i\omega \right) \times \right. \\ \left. \times \left(- g k_x^2 \Lambda^{o,a} + \omega (i + k_z^{o,a} \Lambda^{o,a}) \times \right. \\ \left. \times \left(v^{o,a} (k_x^2 + k_z^{o,a2}) - i\omega \right) \right) + \right. \\ \left. + e^{\frac{z}{\Lambda^{0,a}}} k_z^{o,a} \left((g + ic^{o,a2} k_z^{o,a2}) \times \right. \\ \left. \times \left(- g k_x^2 \Lambda^{o,a} + \omega (i + k_z^{o,a} \Lambda^{o,a}) \times \right. \\ \left. \left(v^{o,a} (k_x^2 + k_z^{o,a2}) - i\omega \right) \right) + \right. \\ \left. + c^{o,a2} k_x^2 \Lambda^{o,a} \left(N^{o,a2} (i k_z^{o,a} \Lambda^{o,a} - 1) + \right. \\ \left. + \omega (i v (k_x^2 + k_z^{o,a2}) + \omega) \right) \right) \right] = 0$$

Подстановка выражений (8) в линеаризованные граничные условия приводит к дисперсионным соотношениям, связывающим компонент волнового вектора k_x с частотой периодических возмущений. Выражение довольно громоздко и с учетом решений выражения (9) можно получить численные решения, определяющие дисперсионные характеристики полных решений в двухслойной системе вязких слабосжимаемых жидкостей.

Дополнительно были проанализированы дисперсионные соотношения периодических течений, возникающих в толще вязкой слабосжимаемой жидкости в трехмерной модели:

$$D_{v}(k) \left(\omega^{2} D_{v}^{2}(k) - \omega N^{2} D_{v}(k) + c^{2} k_{\perp}^{2} N_{c}^{2} - c^{2} \omega k^{2} D_{v}(k) \right) = 0,$$

$$D_{v}(k) = \omega + i v k^{2}, k^{2} = k_{x}^{2} + k_{y}^{2} + k_{z}^{2},$$

$$k_{\perp}^{2} = k_{x}^{2} + k_{y}^{2}, N^{2} = \frac{g}{\Lambda},$$

$$N_{c}^{2} = N^{2} - \frac{g^{2}}{c^{2}}$$
(10)

Выражение (10) имеет решения:

$$k_z = \pm \sqrt{-k_\perp^2 + \frac{i\omega}{\nu}} \tag{11}$$

$$k_{*z} = \pm \left(\frac{-(i\nu N^{2} + 2\nu\omega(\nu k_{\perp}^{2} - i\omega) + c^{2} (2i\nu k_{\perp}^{2} + \omega))}{2\nu (ic^{2} + \nu\omega)} - \frac{\sqrt{-\nu^{2} N^{4} + 2\nu c^{2} (2\nu k_{\perp}^{2} N_{c}^{2} - i\omega N^{2}) + c^{4} \left(\omega^{2} + \frac{4i\nu N_{c}^{2} k_{\perp}^{2}}{\omega}\right)}{2\nu (ic^{2} + \nu\omega)} \right)^{\frac{1}{2}}$$
(12)

$$k_{*z} = \pm \left(\frac{-(i\nu N^{2} + 2\nu\omega (\nu k_{\perp}^{2} - i\omega) + c^{2} (2i\nu k_{\perp}^{2} + \omega))}{2\nu (ic^{2} + \nu\omega)} + \frac{\sqrt{-\nu^{2} N^{4} + 2\nu c^{2} (2\nu k_{\perp}^{2} N_{c}^{2} - i\omega N^{2}) + c^{4} \left(\omega^{2} + \frac{4i\nu N_{c}^{2} k_{\perp}^{2}}{\omega}\right)}{2\nu (ic^{2} + \nu\omega)} \right)^{2}$$

$$(13)$$

Решение (13) описывает регулярный волновой компонент, а решения (11) – (12) описывают сингулярные лигаментные компоненты течения. Анализ показывает, что в модели двумерной жидкости решение (11) вырождается.

Заключение

Проанализированы дисперсионные соотношения, определяющие все компоненты периодического движения вязкой сжимаемой жидкости. Показано, что лигаменты, характеризующие тонкие компоненты течения сопровождают волновое движение во всех частотных диапазонах — от инфранизкочастотных гравитационных до высокочастотных звуковых волн. Предложена модель, позволяющая производить расчеты дисперсионных характеристик движения в системе вязкий слабосжимаемый океан — вязкая слабосжимаемая атмосфера. В трехмерной модели возникает дополнительный лигамент, который вырождается в модели двумерной жидкости. Таким образом, для полноты описания особенностей движения стоит использовать трехмерную модель.

Список литературы

- Chashechkin Y. D., Ilinykh A. Y.Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12, № 4. P. 374.
- [2] Chashechkin Y. D., Ochirov A. A.Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field // Axioms. 2022. V. 11, № 8. P. 402
- [3] Очиров А. А., Чашечкин Ю. Д Установившееся течение жидкости с температурной аномалией // Волновое движение в вязкой однородной жидкости с поверхностным электрическим зарядом // Прикладная математика и механика. 2023. Т. 87, № 3. С. 379–391