ISSN 2658-5782

Том 18 (2023), № 3, с. 147-149

Многофазные системы

http://mfs.uimech.org/2023/pdf/mfs2023.3.037.pdf DOI:10.21662/mfs2023.3.037

Получена: 15.09.2023 Принята: 10.11.2023

Поверхностные волны в круговом цилиндре с возвышением на дне¹

Нестеров С.В., Калиниченко В.А.

Институт проблем механики им. А.Ю. Ишлинского РАН, Москва

В приближении теории длинных волн в [1] рассмотрена задача о стоячих волнах (сейшах) в круговом цилиндре при убывании глубины жидкости от оси сосуда к стенкам по параболическому закону. В настоящей работе рассмотрено влияние возвышения на дне кругового цилиндра на собственные частоты низших волновых мод на свободной поверхности жидкости. Все количественные оценки получены методом ускоренной сходимости в приближении мелкой воды. Проводится сравнение результатов теоретической модели и лабораторного эксперимента. Отметим, что метод ускоренной сходимости [2] был успешно апробирован авторами в работах [3–5] для сейш в прямоугольных сосудах с переменной глубиной и шириной.

В случае жесткого кругового цилиндра радиуса R_0 с горизонтальном дном собственная частота гравитационных волн на свободной поверхности идеальной несжимаемой жидкости глубины h равна [?, 1]

$$\omega_{nm} = \sqrt{gk_{nm} \operatorname{th}(k_{nm}h)} \tag{1}$$

© Нестеров Сергей Владимирович, pmmedit@ipmnet.ru

где для (n, m) волновых мод величина k_{nm} определяется из уравнения $J'_n(k_{nm}R_0) = 0$. Соответствующие профили волн максимального развития для осесимметричных (0, 1), (0, 2) и асимметричных мод (1, 1) и (1, 2) приведены на Рис. 1.

Когда глубина бассейна $H = H_0 f(r/R_0)$ зависит от расстояния, измеряемого от центра бассейна, в приближении теории длинных волн смещение свободной поверхности удовлетворяет дифференциальному уравнению [1]

$$\frac{\partial^2 \eta}{\partial t^2} = g \left[\frac{\partial}{\partial x} \left(H \frac{\partial \eta}{\partial x} \right) + \frac{\partial}{\partial y} \left(H \frac{\partial \eta}{\partial y} \right) \right]$$

Учитывая периодичность волн во времени, переходя к полярным координатам (r, ϕ) и вводя безразмерную переменную $z = r/R_0$, приходим к следующей задаче Штурма–Лиувилля

$$\frac{d}{dz}\left(zf(z)\frac{dU_m}{dz}\right) + \left(\lambda z - \frac{n^2}{z}f(z)\right)U_m = 0,$$
$$u = U_m(r) \begin{cases} \cos n\phi\\ \sin n\phi \end{cases}$$

где
$$n = 0, 1, 2, \dots, \lambda_{n,m} = \frac{\omega^2 R_0^2}{gH_0}.$$

Требуется найти такие значения $\lambda_{n,m}$ (собственные числа), при которых существуют нетривиаль-

¹Работа выполнена по темам государственных заданий № 123021700050-1 и 123021700044-1.

[©] Институт механики им. Р.Р. Мавлютова УФИЦ РАН

[©] Институт проблем механики им А.Ю. Ишлинского РАН

[©] Калиниченко Владимир Анатольевич, vakalin@mail.ru

Рис. 1. Профили волн максимального развития для осесимметричных и асимметричных мод ($R_0 = 9.8$ см; h = 4 см): (a-г) - (0, 1), (0, 2), (1, 1) и (1, 2)

ные решения данного уравнения, удовлетворяющие краевым условиям

 $|U_m(0)| \leq M; \qquad U'_m(1) = 0$

После ввода регуляризирующего параметра *а* краевая задача принимает вид

$$\frac{d}{dz}\left[(z+a)f(z)\frac{dU_m}{dz}\right] + \left(\lambda z - \frac{n^2}{z+a}f(z)\right)U_m = 0 \\ |U_m(0)| \leq M; \quad U'_m = 0$$

$$(2)$$

Для решения (2) с целью нахождения собственных чисел применяется метод ускоренной сходимости, подробно описанный в [2]. Отметим, что с помощью этого метода при $a = 10^{-7}$ удается получить собственные числа с точностью до 10^{-6} .

Все вычисления проводятся в предположении,

что глубина бассейна задается формулами

$$f(z) = \begin{cases} 1+b\,z^2\\ 1+b\,z \end{cases}$$

Отметим, что указанные формы дна бассейна достаточно просто реализовать в экспериментальных условиях. На Рис. 2 приведены зависимости безразмерной собственной частоты низших волновых мод от параметра *b*.

Из Рис. 2 следует, что с увеличением параметра b, характеризующего возвышение на дне сосуда, безразмерные собственные частоты $\sqrt{\lambda_{n,m}}$ симметричных и асимметричных волновых мод монотонно растут.

Для верификации численно-аналитической модели проведена серия экспериментов. Волновые движения исследовались в режиме основного и гармонического резонансов Фарадея. При фиксированной амплитуде сосуда s = 0.7 см вариации Ω обеспечивали возбуждение соответствую-

Рис. 2. Зависимости безразмерных собственных частот от параметра b: (a) — осесимметричные волновые моды $\sqrt{\lambda_{0,1}}$ (1) и $\sqrt{\lambda_{0,2}}$ (2); (б) — асимметричные волновые моды $\sqrt{\lambda_{1,1}}$ (1) и $\sqrt{\lambda_{1,2}}$ (2)

Рис. 3. Профили волн максимального развития в круговом цилиндре радиуса $R_0 = 9.8$ см с коническим возвышением на дне при максимальной глубине жидкости h = 4 см: (а, б) — осесимметричная (0, 1) и асимметричная (1, 1) волновые моды

щей волновой моды (*n*, *m*). В качестве рабочей жидкости использовалась вода. Волновая картина регистрировалась цифровой камерой Canon PowerShot SX50HS (скорость видеосъемки 30 и 120 кадров в секунду). Разрешение видеоизображения составляло 0,15 мм/пиксель. Последующая обработка видеокадров производилась при использовании программы ImageJ.

В экспериментах использовались два сосуда с радиусами $R_0 = 7$ и 9.8 см при глубине воды h = 3.7 и 4 см соответственно. По материалам видеосъемки затухающих волн оценивалась собственная частота низших волновых мод в сосудах с горизонтальным и профилированным дном, изготовленным из технического пластилина.

Фотографии волновых мод (0,1) и (1,1) представлены на Рис. 3. Измерения показали, что собственные частоты этих мод существенно ниже значений, отвечающих сосуду с горизонтальным дном — уменьшение частоты порядка 15%.

Приведенная выше численно-аналитическая модель неплохо описывает экспериментальные результаты по измерению собственных частот стоячих поверхностных гравитационных волн в том случае, когда возбуждается волна с одной узловой линией, проходящей через центр сосуда – волновая мода (1, 1) – рисунки 1 в и 3 б. Отметим, что для волновой моды (1,1) достаточно хорошо выполняется требование теории длинных волн. В проведенных экспериментах волны с частотами $\sqrt{\lambda_{0,1}}$, $\sqrt{\lambda_{0,2}}$, $\sqrt{\lambda_{1,2}}$ и т.д. уже не удовлетворяют длинноволновому приближению ($k_{nm}h < 1$). Поэтому измеренные и рассчитанные собственные частоты волн (0,1) совпадают гораздо хуже по сравнению со случаем моды (1,1).

Эксперименты проводились на стенде ДСО (уникальная научная установка Института проблем механики им. А.Ю. Ишлинского РАН).

Список литературы

- [1] Ламб Г. Гидродинамика. М.-Л.: Гостехиздат, 1947. 928 с.
- [2] Akulenko L.D., Nesterov S.V. High-precision methods in eigenvalue problems and their applications. placeCityBoca Raton: CRC Press, 2005. 255 p.
- [3] Акуленко Л.Д., Калиниченко В.А., Нестеров С.В. Сейши в канале с резким изменением рельефа дна // Изв. РАН. МЖГ. 2012. №3. С. 103–111.
- [4] Калиниченко В.А., Нестеров С.В., Со А.Н. Стоячие поверхностные волны в прямоугольном сосуде с локальными нерегулярностями стенок и дна // Изв. РАН. МЖГ. 2017. №2. С. 65–74.
- [5] Нестеров С.В. Собственные частоты и формы сейш в канале переменной глубины // ПММ. 2022. Т. 86. № 3. С. 365–369.
- [6] Rayleigh L. On waves // Lond. Edinb. placeCityDublin Philos. Mag. J. Sci. 1876. V. 1. No. 4. P. 257–279.