ISSN 2658-5782

Том 18 (2023), № 3, с. 89-92

Многофазные системы

http://mfs.uimech.org/2023/pdf/mfs2023.3.015.pdf DOI:10.21662/mfs2023.3.015

Получена: 15.09.2023 Принята: 10.11.2023

Влияние индуцированных неоднородностей плотности газа на стабильность плазмы непрерывного оптического разряда¹

Андросенко В.Н., Котов М.А., Соловьев Н.Г., Шемякин А.Н., Якимов М.Ю.

Институт проблем механики им. А.Ю. Ишлинского РАН

Непрерывный оптический разряд (НОР) является широкополосным источником света с высокой спектральной яркостью [1,2]. Одним из факторов, оказывающих влияние на стабильность излучения НОР, может являться неоднородность коэффициента преломления среды, через которую проходит лазерный луч, формирующий и питающий плазму. Особенно это актуально при больших разрядных объемах в колбах или камерах, когда термогравитационная конвекция, возникающая в плазмообразующем газе вокруг НОР [3, 4], создает направленный поток газа вверх в области вблизи плазмы (в центральной части колбы/камеры). Здесь может возникать обратное движение газа вниз в отдаленных от плазмы областях (на периферии). Поскольку конвекция газа вокруг НОР является главным фактором, от которого зависит стабильность излучения плазмы, изучение ее влияния на процессы

формирования и поддержания плазмы НОР является особенно актуальным.

НОР зажигался и поддерживался в сапфировой трубке с внутренним диаметром 15 мм и длиной 70 мм, наполненной ксеноном (Рис. 1).

Инициация и поддержание плазмы проводилось по следующей схеме (Рис. 1(*a*)): импульснопериодический лазер YLPP-1-150V-30 (1) генерировал излучение на длине волны 1.06 мкм, направленное через зеркало (2) и сфокусированное линзой (3) в центре сапфировой трубки (4), наполненной ксеноном под давлением 30 бар (газ комнатной температуры). В фокусе луча инициировался оптический пробой. Далее включался непрерывный лазер Raycus RFL-C1500 (5) с выходной мощностью 150-1500 Вт и длиной волны 1.08 мкм, настроенный с помощью линзы (6) на пересечение фокальных перетяжек обоих лазеров. Мощность его излучения превышала пороговую в 3-4 раза. После инициации НОР импульсный лазер выключался, а мощность непрерывного лазера уменьшалась до необходимой для поддержания плазмы. Измерение мощностей излучения обоих лазеров во время эксперимента осуществлялось с помощью измерителей мощности (7).

На Рис. 1(b) показана схема получения изоб-

¹Работа выполнена по теме государственного задания (№ 123021700057-0).

[©] Институт механики им. Р.Р. Мавлютова УФИЦ РАН

[©] Институт проблем механики им А.Ю. Ишлинского РАН

[©] Андросенко Владислав Николаевич, androsenko@ipmnet.ru

[©] Котов Михаил Алтаевич, kotov@ipmnet.ru

[©] Соловьев Николай Германович, solovyov@lantanlaser.ru

[©] Шемякин Андрей Николаевич, shemyakin@lantanlaser.ru

[©] Якимов Михаил Юрьевич, yakimov@lantanlaser.ru

Рис. 1. Схема эксперимента: (*a*) Инициация НОР с помощью импульсно-периодического лазера, 1 — импульснопериодический лазер, 2 — зеркало, 3, 6 — фокусирующие линзы, 4 — сапфировая трубка с ксеноном, 5 — лазер непрерывного излучения, 7 — измерители мощности лазерного излучения; (*b*) Схема получения изображения плазмы; (*c*) Рисунок трубки с внутренним диаметром 15 мм и длиной 70 мм, наполненной ксеноном под давлением 30 бар, в объеме которой инициировался НОР

ражения плазмы. Свет НОР, проходя через линзу f = 116 мм и светофильтр 512 нм, попадал на объектив и матрицу скоростной камеры. Аналогично шлирен методом с дополнительным источником света за плазмой и щелью в фокусе были получены теневые изображения конвективных пульсаций вокруг НОР и фотографии хаотичного распределения завихрений в объеме трубки (Рис. 1(*c*)). Съемка проводилась со скоростью 1000 кадров в секунду и экспозицией 50 наносекунд при съемке плазмы и 998 наносекунд при съемке шлирен методом.

На полученных сериях изображений конвективных пульсаций вокруг плазмы НОР (Рис. 2) отмечено нестабильное поведение факела термогравитационной конвекции.

Также обращают на себя внимание неоднородности плотностей в периферийной области разрядного объема. На Рис. 3 показана картина таких остаточных течений в трубке сразу после отключения лазера, поддерживающего НОР. На Рис. 4 представлены прямые фотографии плазмы с низкой выдержкой, при которой видна ее структура. Видно, что остаточные течения горячего газа и, соответственно изменения градиентов плотности и коэффициента преломления среды влияют на прохождение лазерного пучка и траектории пролета квантов лазерного излучения в разрядном объеме. Поэтому распределение интенсивности лазерного излучения при поглощении в плазме изменяется соответственно градиентам коэффициента преломления в объеме трубки, от чего и возникает пространственно-временная нестабильность структуры плазмы НОР.

Такое влияние на структуру плазмы НОР можно объяснить большой высотой используемой трубки (Рис. 1(*c*)) – при ее вертикальном размещении конвективные течения, возникающие около плазмы НОР, успевают набирать большие значения скорости и интерферировать друг с другом. Для оценки этого влияния проводились эксперименты с горизонтальным размещением сапфировой трубки. В этом случае объем циркуляции в конвективной зоне уменьшался по сравнению с вертикальным размещением — характерные размеры по 7.5 мм вверх и вниз от НОР. Непрерывное лазерное излучение подавалось снизу с помощью внеосевого параболического зеркала.

При такой конфигурации НОР остаточные нестабильности горячего газа в периферийной области трубки практически пропадают, и сохраняется стабильность конвективных пульсаций и структуры плазмы НОР (Рис. 5).

Изучение поведения структуры плазмы НОР в разрядном объеме с различными вариантами установки трубки и оптической схемы, фокусирующей лазерное излучение, является определяющим фактором для исследования нестабильностей НОР, возникающих в плазмообразующем газе.

Рис. 2. Серия шлирен фотографий конвективных пульсаций НОР, поддерживаемого мощностью непрерывного лазерного излучения 210 Вт на 1.08 мкм. Выдержка 998 мкс, размер одного кадра 4.35 \times 7.45 мм

Рис. 3. Серия шлирен фотографий остаточных неоднородностей коэффициента преломления среды, вызванных конвекцией горячего газа вокруг НОР сразу после его выключения. Выдержка 998 мкс, размер одного кадра 4.35×7.45 мм

Рис. 4. Серия фотографий плазмы НОР с мощностью непрерывного лазерного излучения 675 Вт через каждые 4 мс. Выдержка 50 мкс., размер одного кадра 3.8 imes 1.9 мм

Рис. 5. Фотография плазмы НОР с выдержкой 50 мкс (слева) и шлирен фотография конвективных пульсаций НОР с выдержкой 998 мкс (справа) с мощностью непрерывного лазерного излучения 600 Вт. Размер кадров 2.55 × 3.18 мм и 4.48 × 3.58 мм для левого и правого рисунков соответственно

Список литературы

- [1] Зимаков В.П., Кузнецов В.А., Соловьев Н.Г., Шемякин А.Н., Шилов А.О., Якимов М.Ю.Взаимодействие лазерного излучения ближнего ИК-диапазона с плазмой непрерывного оптического разряда // Физика плазмы. 2016. Т. 42(1). С. 74–80.
- [2] Зимаков В.П., Кузнецов В.А., Лаврентьев С.Ю., Соловьев Н.Г., Шемякин А.Н., Шилов А.О., Якимов М.Ю.Новые возможности применения оптических разрядов в аэрофизическом эксперименте // Физико-химическая кинетика в газовой динамике. 2016. Т. 17(2). С. 653. http://chemphys.edu.ru/issues/2016-17-2/articles/653/.
- [3] Kotov M.A., Lavrentyev S.Yu., Solovyov N.G., Shemyakin A.N., Yakimov M.Yu.Dynamics of laser plasma convective plume in high pressure xenon // J. Phys.: Conf. Ser. 2020. V. 1675. P. 012073. https://doi.org/10.1088/1742-6596/1675/1/012073.
- [4] Kotov M.A., Lavrentyev S.Y., Shemyakin A.N., Solovyov N.G., Yakimov M.Y.Oscillations of convective flow around a continuous optical discharge in high-pressure xenon // Plasma Sources Science and Technology. 2022. V. 31(12). P. 12.