

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ С ФУНКЦИЯМИ АВТОМАТИЗИРОВАННОГО РАСЧЕТА ПОТРЕБЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ В ТРУБОПРОВОДНОМ ТРАНСПОРТЕ НЕФТИ

Богданов Р. М., Лукин С. В. Институт механики УНЦ РАН, Уфа

Аннотация. Транспортировка нефти и нефтепродуктов характеризуется существенными затратами на электроэнергию. Правильный учет и прогноз расхода электроэнергии требуют знания множества факторов. В ИМех УНЦ РАН разработано программное обеспечение для расчета норм расхода электроэнергии на планируемый период. На основе принципов реляционной модели данных разработана принципиальная схема объектов магистрального транспорта нефти, позволяющая в структурированном виде хранить исходные данные и рассчитанные параметры.

Потребление электроэнергии при перекачке нефти по трубопроводам зависит от множества факторов, таких как объем перекачки, физико-химические свойства нефти, тип и состояние насосно-силового оборудования, длина и диаметр трубопровода, оснащенность нефтепроводов системами телемеханики, автоматики и средствами защиты, схема работы нефтепровода, время и режим работы нефтепровода. Для оценки потребления электроэнергии в трубопроводном транспорте нефти в ИМех УНЦ РАН была разработана соответствующая методика [1]. Ее использование без программного обеспечения требует больших временных затрат и вызывает большие сложности. С целью повышения эффективности диагностики потребления электроэнергии в трубопроводном транспорте нефти на основе существующей методики

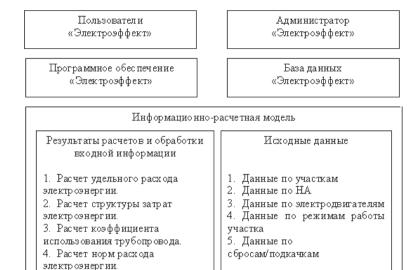


Рис. 1. Архитектура программного продукта «Электроэффект»

был разработан программный комплекс «Электроэффект» [2]. Он позволяет решать следующие задачи:

- 1. Расчет удельного расхода электроэнергии.
- 2. Расчет структуры затрат электроэнергии.
- 3. Расчет коэффициента использования трубопровода.
- 4. Расчет норм расхода электроэнергии.

Объекты магистрального транспорта можно структурировать при помощи принципов реляционной модели данных [3]. Для устранения избыточности и нарушений целостности данных схема была нормализована [3]. Для реализации программного обеспечения предлагается следующая архитектура программнотехнических средств (рис. 1).

Таким образом, исходными данными для расчетов по перечисленным задачам являются: характеристики участка от станции до станции: длина, внутренний диаметр, геодезические отметки начала и конца, плотность и вязкость нефти, время планируемых ремонтных работ, связанных с остановкой перекачки; ха-

Период	I кв.	II kb.	III kb.	IV kb.
Время работы (ч.)	2160	2184	2208	2208
Объем перекачки (тыс.т.)	3241	3220	3581	3674
Плотность $(т/м^3)$	0,873	0,869	0,864	0,866
Вязкость (сСт)	21,7	16,4	12,5	14,6
Энергия (тыс. кВт-ч)	18305,00	15751,00	19957,00	21556,00
N1	14,30	12,39	14,11	14,86
N2	11,47	10,58	11,63	12,48
N3	1,93	1,81	1,88	1,84

Таблица 1. Результаты расчета удельного расхода электроэнергии за 2005 год

рактеристики точек сброса/подкачек: расстояние от НПС до точек сброса/подкачек, внутренний диаметр участка с постоянным объемом перекачки до/между точками сброса/подкачки, объемы сброса/подкачек; тип НА и электродвигателей, установленных на участке; число НПС; плановые объемы перекачки нефти.

Реализована возможность решения задач 1–4 для отдельного эксплуатационного участка магистрального нефтепровода (МН), для МН в целом, для выбранного ряда МН, для МН отдельного управления магистральных нефтепроводов, входящих в состав ОАО «АК «Транснефть», для выбранных временных параметров (месяц, квартал, год).

В качестве примера решения задачи поквартального расчета удельного расхода электроэнергии за 2005 год выбран участок Горький—Рязань под управлением ОАО «Верхневолжскиефтепровод». В табл. 1 приведены результаты расчетов:

Расчет структуры энергозатрат за указанный период приведен на рис. 2.

В табл. 2 показаны результаты расчета коэффициента использования трубопровода.

Для задачи расчета норм потребления электроэнергии за год использовались следующие значения: $\rho=0,859~{\rm T/m^3},$ $\mu=11,8~{\rm cCr},$ время работы $8400~{\rm vacob},$ объем перекачки

Период	I кв.	II кв.	III кв.	IV kb.
Время работы (ч)	2160	2184	2208	2208
Объем перекачки (тыс.т.)	3241	3220	3581	3674
Плотность $(т/м^3)$	0,873	0,869	0,864	0,866
Вязкость (сСт)	21,7	16,4	12,5	14,6
Энергия (тыс. кВт-ч)	18305,00	15751,00	19957,00	21556,00
Коэф. исп-я тр-да (%)	68,76	73,60	68,71	69,54

Таблица 2. Результаты расчета коэффициента использования трубопровода за 2005 год

12722,5 тыс.т, КПД трубопровода $\eta=83,5\%$. При расчетах получено:

- электроэнергия, потраченная на насосы 8728,39 тыс. к $Br \cdot q$,
- электроэнергия, потраченная на электродвигатели 1338,68 тыс. к $\mathrm{Bt}\cdot\mathrm{y}$,
- норма потребления электроэнергии 53440.2 тыс. к B_{T} -ч.

На рис. 3 показана рабочая область программы.

При решении перечисленных выше задач учитываются следующие особенности участков магистральных нефтепроводов:

- 1. Тип и характеристики установленного насосного оборудования.
- 2. Тип и характеристики установленного энергетического оборудования.
 - 3. Режимы работ МН.
 - 4. Время работы МН.
 - 5. Физико-химические свойства перекачиваемой нефти.
 - 6. Параметры МН (протяженность, диаметр и т.д.).
 - 7. Тип используемого оборудования при учете нефти.

Полученная в результате использования программного комплекса информация позволяет:

- оценить эффективность использования электроэнергии при транспорте нефти;
- -выявить «узкие места» с точки зрения затрат электроэнергии;

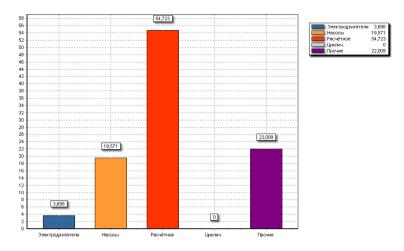


Рис. 2. Расчет структуры энергозатрат

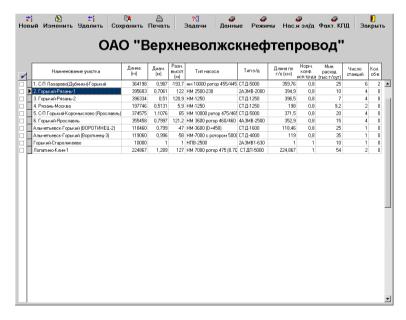


Рис. 3. Рабочая область программного продукта «Электроэффект»

- определить степень потребления электроэнергии в динамике, по сравнению с базовым периодом;
 - прогнозировать потребление электроэнергии;
- определить эффективность проведенных энергосберегающих мероприятий;
 - определить структуру потребления электроэнергии;
 - разработать энергосберегающие мероприятия;
- оценить эффективность работы оперативного и диспетчерского персонала;
 - проводить энергообследования участков МН.

Опыт эксплуатации программного комплекса «Электроэффект» показал его высокую эффективность при проведении энергетических обследований (энергоаудит) предприятий OAO «АК «Транснефть».

Список литературы

- [1] Методика оценки эффективности использования электроэнергии на перекачку нефти в условиях снижения объемов перекачки нефти. Уфа.: ИМех УНЦ РАН. 1999. 35 с.
- [2] Авторское свидетельство об официальной регистрации программы для ЭВМ «Расчёты по определению эффективности использования электроэнергии при трубопроводном транспорте нефти (Электроэффект)» // Богданов Р. М. Лукин С. В., Жигулин Д. Н. Патент № 2008613898, зарегистрированный в Реестре программ для ЭВМ по заявке № 2008612025 от 15 августа 2008 г.
- [3] Дейт К. Дж. Введение в системы баз данных. М. Вильямс, 2001. 1072 с.