

Устойчивость движения прыгающих пневмоупругих систем

С. С. Комаров, Н. И. Мискактин

Уфимский государственный авиационный технический университет, Уфа

Аннотация. Рассматривается пространственное движение многомассовой прыгающей пневмоупругой системы. Исследуются устойчивость движения пневмоупругой системы и устойчивость алгоритма численного интегрирования уравнений.

Ключевые слова: пневмоупругость, прыгающая система, устойчивость движения, устойчивость вычислительного алгоритма

1. Введение

В данной работе проведено исследование устойчивости пространственного движения многомассовой прыгающей пневмоупругой системы на примере двухмассового робота с пневмооснованием наиболее эффективным способом, с минимальным количеством этапов преобразования, включающим дискретизацию поверхности мягких оболочек основания конечными элементами, описание полной энергии системы как функции Гамильтона и составление канонической системы уравнений движения, которая решается эффективными вычислительными методами. Математическая модель подобного робота представляется нелинейной системой обыкновенных дифференциальных уравнений первого порядка [1].

Система уравнений Гамильтона в общем случае имеет вид:

$$\begin{cases}
\dot{q}_i = \frac{\partial H}{\partial p_i}, \\
\dot{p}_i = -\left(\frac{\partial H}{\partial q_i} + \frac{\partial D}{\partial \dot{q}_i} + \frac{\partial A}{\partial q_i}\right),
\end{cases} (1)$$

где H — полная энергия системы в фазовом пространстве; D — диссипативная функция; A — работа внешних и внутренних сил, а также источников энергии.

Функция Гамильтона является функцией обобщенных координат и обобщенных импульсов системы:

$$H = H(\bar{q}, \bar{p}), \tag{2}$$

где q_i, p_i — обобщенные координаты и импульсы системы:

$$\bar{q} = (\bar{r}_1, \bar{r}_2, \bar{\varphi}_{1z}, \bar{\varphi}_{2z}, \bar{r}_{11}, \bar{r}_{12}, \dots, \bar{r}_{1N}, \bar{r}_{21}, \dots, \bar{r}_{2N}, \dots, \bar{r}_{MN}),$$
$$\bar{p} = (\bar{P}_1, \bar{P}_2, \bar{L}_1, \bar{L}_2, \bar{p}_{11}, \bar{p}_{12}, \dots, \bar{p}_{21}, \bar{p}_{22}, \dots, \bar{p}_{MN}).$$

Отличительной особенностью задач, описывающих динамическое взаимодействие пневмоупругих систем с окружающей средой, состоит в том, что в них нагрузки большой интенсивности действуют на малых перемещениях. Подобные нагрузки возникают при контактном взаимодействии твердых тел между собой и нижнего тела через пневмоупругое основание с опорной поверхностью.

Описанные свойства пневмоупругих систем требуют производить интегрирование уравнений движения с малым шагом по времени, что приводит к значительным затратам машинного времени. При интегрировании такой системы уравнений с большим шагом происходит потеря устойчивости решения и остановка программы по операции с плавающей точкой. Это требует предварительного исследования системы уравнений и тщательного подбора шага по времени при интегрировании системы нелинейных уравнений. При этом возникает потребность в исследовании устойчивости движения пневмоупругого робота, связанного с оценками устойчивости решения системы дифференциальных уравнений и вычислительного алгоритма.

2. Математическая модель движения многомассовой пневмоупругой системы

Математическая модель движения двухмассового прыгающего пневмоупругого робота (Рис. 1) представляет собой каноническую систему обыкновенных дифференциальных уравнений первого порядка [2].

Гамильтониан двухмассовой пневмоупругой системы запишется следующим образом:

$$H = T_1 + T_2 + E_1 + E_2 + E_A + E_W + E_N, (3)$$

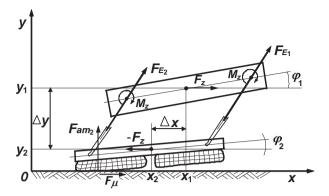


Рис. 1. Двухмассовый прыгающий пневмоупругий робот

где T_i, E_i — кинетическая и потенциальная энергии тел; E_A — полная энергия оболочки пневмоопор; E_W, E_N — энергия деформации амортизаторов на стяжках, ограничивающих перегрузки при взаимодействии тел друг с другом.

Полная энергия оболочки [3] равна:

$$E_A = \frac{1}{2} \iint_{\Omega} \dot{\bar{r}}^2 \gamma dS + \iint_{\Omega} W dS + \iint_{\Omega} \overline{gr} \gamma dS, \tag{4}$$

где $\bar{r},\, \dot{\bar{r}}$ — радиус–вектор и скорость поверхности мягкой оболочки; γ — поверхностная плотность материала; \bar{g} — ускорение свободного падения у поверхности планеты; W — удельная упругая энергия оболочки; Ω — область поверхности мягкой оболочки.

Удельная упругая энергия равна

$$W = \frac{1}{2}(T_1\varepsilon_1 + T_2\varepsilon_2 + S\omega),\tag{5}$$

где $\varepsilon_1, \, \varepsilon_2$ — относительные растяжения вдоль осей координатных линий; ω — изменение угла между координатными линиями.

Работы газа, заключенного в пневмооболочке и контактного давления твердых тел и опорной поверхности над элементами этой оболочки, равна:

$$A_A = \int_{t_1}^t \iint_{\Omega} P \,\dot{\bar{r}} \,\bar{n} \,dS \,dt + \int_{t_1}^t \iint_{\Omega} -\mu \,P \,\dot{\bar{r}} \,\bar{\tau} \,dS \,dt, \tag{6}$$

где Ω — область поверхности пневмооболочки; P — избыточное давление внутри пневмооболочки и контактное давление; dS — элемент поверхности; $\bar{n}, \; \bar{\tau}$ — нормальный и тангенциальный вектора к элементу

поверхности; μ — коэффициент трения движения элемента оболочки по поверхности других тел.

Диссипативная функция Релея имеет вид:

$$D = \frac{1}{2} \sum_{i=4}^{I} \sum_{j=4}^{I} b_{ij} \dot{\bar{r}}_i \dot{\bar{r}}_j.$$
 (7)

Работа нелинейного источника энергии зависит от направления движения тел и определяется термодинамическим циклом источника энергии:

$$A_{E}(P,q) = \begin{cases} \int_{V_{n}}^{V} P(\bar{q}) dV(\bar{q}) & \dot{u} \geq 0 \\ V_{n} & = \\ -\int_{V_{m}}^{V} P(\bar{q}) dV(\bar{q}) & \dot{u} < 0 \end{cases}$$

$$= \begin{cases} \int_{Q_{n}}^{q} P(\bar{q}) \bar{S} d\bar{q} & \dot{u} \geq 0 \\ -\int_{Q_{m}}^{q} P(\bar{q}) \bar{S} d\bar{q} & \dot{u} < 0 \end{cases}$$

$$(8)$$

где u — относительное перемещение верхнего тела относительно нижнего; P(q) — давление и V(q) — объем рабочей камеры нелинейного источника энергии как функции обобщенных координат.

Каноническая система уравнений движения (1) с учетом диссипации энергии и работы нелинейных источников энергии имеет следующий вид:

$$\dot{\bar{q}}_{k} = \frac{\bar{p}_{k}}{M_{k}}, \quad k = 1.2; \quad \dot{\bar{p}}_{k} = \bar{F}_{P} + \bar{F}_{C} + \bar{F}_{E} + \bar{F}_{B} + M_{k}\bar{g};$$

$$\bar{L}_{k} = \bar{M}_{P} + \bar{M}_{C} + \bar{M}_{E} + \bar{M}_{B}; \quad \dot{\bar{q}}_{ij} = \frac{\bar{p}_{ij}}{m_{ij}};$$

$$\dot{\bar{p}}_{ij} = \bar{T}_{ij}(u, v) + \bar{P}_{ij}(u, v) + \bar{F}_{ij}(u, v) - C_{a}(\dot{\bar{q}}_{ij} + \dot{\bar{r}}) - C_{r}(2\dot{\bar{q}}_{ij} - \dot{\bar{q}}_{i-1j} - \dot{\bar{q}}_{i+1j});$$

$$\dot{P}_{i} = \frac{\gamma P_{i}}{\rho_{i}W_{i}} \left(\sum_{k} Q_{ik} - \rho_{i}\dot{W}_{i} \right),$$
(9)

где M_k — массы твердых тел; \bar{F}_E , \bar{M}_E — сила и момент, развиваемые нелинейным источником энергии; \bar{F}_B , \bar{M}_B — сила и момент взаимодействия твердого тела с пневмооснованием; P_i , ρ_i — давление и плотность

газа в i-м отсеке пневмооснования; $Q_{i,k}$ — массовый расход воздуха из i-й полости пневмооснования объема W_i в k-ю полость; γ — показатель адиабаты; \bar{F}_C , \bar{M}_C — силы и моменты сил реакции пневмооснования; \bar{T}_{ij} — тензор мембранных усилий; \bar{P}_{ij} — плотность поверхностной нагрузки от сил давления; \bar{F}_P , \bar{M}_P — поверхностные силы и момент силы давления газа на твердое тело; W_i — объем i-й полости пневмооснования; $\frac{\partial D_O}{\partial \dot{q}} = -C_a(\dot{q}_{ij} + \dot{r}) - C_r(2\dot{q}_{ij} - \dot{q}_{i-1j} - \dot{q}_{i+1j})$ — диссипативные силы, действующие на элементы пневмооболочки.

Так как модель содержит короткодействующие и большие по величине силы (Рис. 2), то возникает необходимость исследовать устойчивость алгоритма решения уравнений в зависимости от шага интегрирования системы (9).

Фактически шаг интегрирования определяется небольшим промежутком времени (Рис. 3, отрезок Δt), когда происходит интенсивное взаимодействие тел между собой и взаимодействие нижнего тела с опорной поверхностью, где видно быстрое изменение скорости в момент силового взаимодействия тел между собой и опорной поверхностью. Это позволяет в другие промежутки времени увеличить шаг интегрирования на два порядка.

Для исследования устойчивости алгоритма было проведено интегрирование системы уравнений движения (9) с различным шагом по времени.

3. Исследование устойчивости алгоритма расчета и движения системы

Поведение решений механических систем с короткодействующими силами близко между собой. При увеличении шага до определенного значения решение не меняется, затем решение начинает меняться и при достижении критического значения происходит потеря устойчивости решения и остановка программы из-за некорректной операции с числами с плавающей точкой.

На Рис. 4, 5 показаны зависимости разности $\bar{X}_1, \bar{X}_2, \bar{Y}_1, \bar{Y}_2$ — координат верхнего и нижнего тела и их средними значениями $\bar{X}_i = X_i - X_{i\,cp}$ и $\bar{Y}_i = Y_i - Y_{i\,cp}$, то есть отклонение тел от среднего значения при фиксированной величине времени проведения расчета.

На Рис. 6, 7 показаны зависимости разности \bar{V}_{1x} , \bar{V}_{1y} — горизонтальной и вертикальной скорости верхнего тела и их средними значениями $\bar{V}_{1x} = V_{1x} - V_{1x\,cp}$ и $\bar{V}_{1y} = V_{1y} - V_{1y\,cp}$, то есть отклонение скорости тела

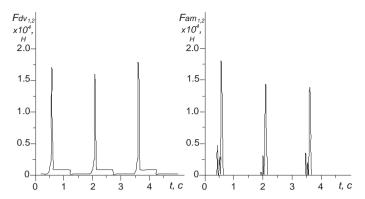


Рис. 2. Изменение силы нелинейного источника энергии и реакции пневмооснования

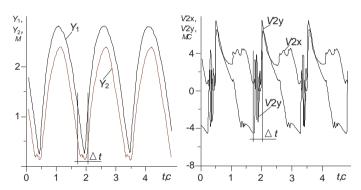


Рис. 3. Траектория движения верхнего и нижнего тела и вертикальная и горизонтальная скорости нижнего тела

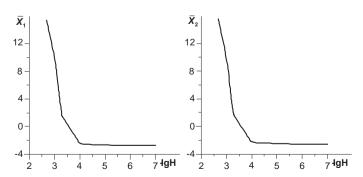


Рис. 4. Зависимость отклонения перемещения от логарифма шага интегрирования

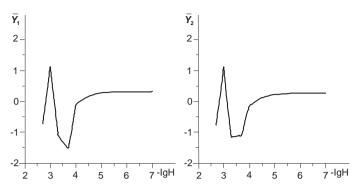


Рис. 5. Зависимость отклонения значения вертикальной координаты от логарифма шага интегрирования

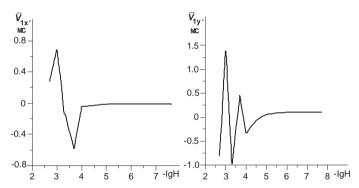


Рис. 6. Зависимость отклонения горизонтальной и вертикальной скорости верхнего тела от логарифма шага интегрирования

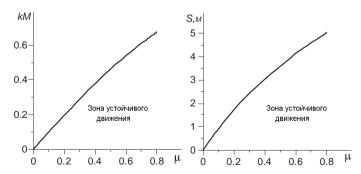


Рис. 7. Зона устойчивости движения по параметру управления и максимальная дистанция прыжка в зависимости от коэффициента трения

от среднего значения при фиксированной величине времени проведения расчета.

Шаг прыгающего робота зависит от параметра управления kM, влияющего на сдвиг верхнего тела относительно нижнего Δx (Puc. 1).

При изменении сдвига больше максимального значения угол наклона нелинейных источников движения относительно горизонта становится меньше критического значения и происходит проскальзывание нижнего тела от точки первоначального контакта с опорой, что приводит к потере устойчивости и опрокидыванию робота. Предельные значения параметра управления и максимального шага зависят от коэффициента трения, чем больше коэффициент трения, тем дальше может прыгнуть робот (Рис. 7).

Исследование устойчивости алгоритма решения уравнений движения показали, что шаг интегрирования $H=10^{-6}$ позволяет решать уравнения движения в зоне устойчивого движения системы с точностью до 1.3%.

При определении границы зоны устойчивого движения системы можно использовать шаг $H=10^{-5}$, но, так как в этом случае на границах устойчивости движения ошибка может достичь 15%, необходимо провести перепроверку расчетов на границе устойчивости с шагом $H=10^{-6}$ или $H=5\cdot 10^{-7}$ в зависимости от величины ошибки. Дальнейшее уменьшение шага интегрирования не дает заметного изменения решения и с практической точки зрения приводит к излишней трате машинного времени.

4. Выводы

При проведении исследования движения многомассовой пневмоупругой системы в первую очередь необходимо исследовать устойчивость алгоритма решения системы уравнений. Исследование необходимо проводить в широком диапазоне возможных изменений параметров системы, а также начальных перемещений и скоростей, определяющих состояние системы.

С увеличением шага интегрирования отклонение решения предсказуемо идет в сторону увеличения амплитуды и периода автоколебаний нелинейной механической системы.

На различных фазах движения, интегрирование уравнений движения пневмоупругой системы необходимо проводить с различным шагом интегрирования: на фазе динамического взаимодействия $H=10^{-6}$, а на фазе баллистического полета $H=5\cdot 10^{-5}$.

Максимальное расстояние прыжка зависит от коэффициента трения μ и меняется до 5 метров при изменении коэффициента трения до $\mu=0.8$.

При дальнейшем увеличение параметра управления kM>0.65 происходит проскальзывание нижнего тела (опоры) относительно поверхности и потеря устойчивости движения.

Список литературы

- [1] Комаров С. С., Мискактин Н. И., Цвиленева Н. Ю. Основы пневмоупругости мягких средств спасения спускаемых объектов // Наука и технологии. М.: РАН, 2005. С. 302–313.
- [2] Комаров С. С., Мискактин Н. И. Гамильтонов подход к численному преставлению модели пневмоупругости //Вестник УГАТУ. Уфа. 2006. Т. 7, № 1. С. 179–186.
- [3] Komarov C. C., Miskaktin N. I. Computer modeling of impact interaction with screen of double-mass solid system // Proceedinds of the 5th International wordshop on computer science and information technologies CSIT, 2003. Ufa, Russia. 2003. P. 115–117.