

Инжекция воды в пористую среду, насыщенную паром, с учетом капиллярных сил

У. Р. Ильясов, Р. А. Махмутов

Филиал Южно-Уральского государственного университета, Нижневартовск Стерлитамакская государственная педагогическая академия. Стерлитамак

Аннотация. Рассмотрена задача инжекции воды в высокотемпературную пористую среду через проницаемую границу. Исследованы различные режимы закачки, зависящие от исходных параметров термального резервуара и теплоносителя (воды). В частности проведен анализ влияния капиллярных сил на эффект «самопроизвольного всасывания» воды.

Ключевые слова: многофазная система, пористая среда, математическое моделирование, численные методы

1. Введение

Геотермальное тепло наряду с тем, что является альтернативным источником энергии, может использоваться как элемент энергосберегающих технологий. Практический интерес представляют задачи извлечения тепла из высокотемпературных проницаемых пород, а также аккумуляция тепла для последующего использования.

В работах [1–3] рассмотрены некоторые аспекты данной проблемы. В частности, в [1] предложена математическая модель процесса инжекции, показано существование двух режимов закачки, сопровождающихся испарением закачиваемой воды и конденсацией пластового пара, получен критерий, разделяющий эти режимы. В [2] показан эффект, при котором происходит самопроизвольное впитывание воды вследствие конденсации

пластового пара и понижения давления в пористой среде.

В данной работе рассматривается влияние капиллярных сил [3] и тепловых потоков вблизи границы пористой среды на режимы инжекции.

2. Основные уравнения

При математическом описании процесса инжекции примем следующие допущения. Температуры пористой среды и насыщающего флюида (воды или пара) совпадают. Пористая среда несжимаема и неподвижна, пористость постоянна.

Для описания процессов тепломассопереноса воспользуемся системой состоящей из законов сохранения масс, энергии и закона Дарси. Тогда в области воды, контактирующей с пористой средой (x < 0), система уравнений имеет вид:

$$\frac{\partial}{\partial t}(\rho_w) + \frac{\partial}{\partial x}(\rho_w v_w) = 0,$$

$$\rho_w c_w \frac{\partial T}{\partial t} + \rho_w c_w v_w \frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(\lambda_w \frac{\partial T}{\partial x} \right), \quad p = \text{const.}$$
(1)

В пористой среде, насыщенной водой или паром (x > 0)

$$m\frac{\partial}{\partial t}(\rho_i) + \frac{\partial}{\partial x}(m\rho_i v_i) = 0,$$

$$\rho c \frac{\partial T}{\partial t} + m\rho_i c_i v_i \frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x}\right), \quad mv_i = -\frac{k}{\mu_i} \frac{\partial p}{\partial x},$$

$$\rho c = m\rho_i c_i + (1 - m)\rho_s c_s, \quad \lambda = m\lambda_i + (1 - m)\lambda_s \quad (i = wp, v).$$
(2)

Здесь T — температура; p — давление; v — скорость; m — пористость; k — проницаемость; c — теплоемкость; μ — вязкость; ρ — плотность; λ — теплопроводность. Индексы w, wp, v, s соответствуют подводимой воде, воде, пару и скелету пористой среды.

Для пара примем уравнение Клайперона—Менделеева, воду будем считать несжимаемой

$$\rho_v = \frac{p}{R_v T}, \quad \rho_l = \rho_{l0}.$$

Здесь отметим, что при условии несжимаемости воды из первого уравнения (1) следует однородное распределение скорости в области x<0 или $v_w=v_w(t)$. Величина скорости v_w определяется из условия баланса

массы на границе контакта (x = 0), то есть скоростью фильтрации или распределением давления в области (x > 0).

Кроме этого необходимо записать соотношения, следующие из условий баланса массы и тепла на границе пористой среды и закачиваемой жидкости (x=0):

$$\rho_w v_w^- = m \rho_{wp} v_{wp}^+, \quad \left(\lambda \frac{\partial T}{\partial x}\right)^- = \left(\lambda \frac{\partial T}{\partial x}\right)^+,$$
(3)

и на границе фазовых переходов $x = x_{(s)}$:

$$m\rho_{wp} \left(\upsilon_{wp} - \dot{x}_{(s)} \right) = m\rho_v \left(\upsilon_v - \dot{x}_{(s)} \right),$$

$$\left(\lambda \frac{\partial T}{\partial x} \right)^+ - \left(\lambda \frac{\partial T}{\partial x} \right)^- = m\rho_{wp} l \left(\upsilon_{wp} - \dot{x}_{(s)} \right),$$
(4)

где v_w^- и v_w^+ — скорости жидкости в области x<0 и x>0 соответственно; l — удельная теплота фазового перехода.

Будем полагать, что на границе x=0 давление и температура непрерывны

$$T^{-} = T^{+} = T_{(0)}, \quad p^{-} - p^{+} = p_{(0)},$$

а на границе фазовых переходов давление претерпевает скачек, равный капиллярному давлению

$$T^- = T^+ = T_{(s)}, \quad p^- - p^+ = p_{\sigma},$$

где капиллярное давление $p_{(\sigma)}$ определяется формулой Лапласа

$$p_{\sigma} = -\frac{2\sigma\cos\theta_{\sigma}}{r_{\sigma}}. (5)$$

Здесь σ — поверхностное натяжение; θ_{σ} — угол смачивания; r_{σ} — характерный радиус капилляра, величина которого для пористой среды определяется выражением $r_{\sigma} = \sqrt{k/m}$.

Будем считать, что с учетом изменения давления насыщенного пара над искривленной поверхностью (мениском) на поверхности фазового перехода температура $T_{(s)}$ и давление $p_{(s)}$ связаны уравнением

$$p_{(s)} = p_* \exp\left(-\frac{T_*}{T_{(s)}} - \frac{2\sigma V}{r_\sigma R_v T_{(s)}}\right).$$
 (6)

Здесь R_v — приведенная газовая постоянная; T_* и p_* — эмпирические параметры, определяемые на основе табличных данных для зависимости температуры насыщения от давления.

3. Постановка задачи

Рассмотрим одномерную задачу инжекции воды с температурой T_e , занимающей область x<0 в пористую среду, насыщенную паром, с температурой T_0 при давлении p_0 . Пористая среда занимает область x>0. Нагнетание осуществляется при постоянном значении давления в жидкости p_e . С учетом этого начальные условия можно записать в виде:

$$p = p_0, \quad T = T_0 \quad (x > 0), \qquad p = p_e, \quad T = T_e \quad (x < 0).$$

В рамках принятой выше системы уравнений эта задача имеет автомодельное решение. Введем безразмерное давление, температуру и автомодельную переменную

$$P = \frac{p}{p_0}, \ \Theta = \frac{T}{T_0}, \ \Re_v = \frac{\rho_v}{\rho_{v0}} = \frac{P}{\Theta}, \ \xi = \frac{x}{2\sqrt{\kappa^{(T)}t}} \ \left(\kappa^{(T)} = \frac{\lambda_s}{\rho_s c_s}\right).$$

Тогда уравнения тепло- и массопереноса имеют аналитические решения. Подставляя эти решения в условия (3), (4) можно получить систему трансцендентных уравнений для определения координаты границы фазовых переходов $x_{(s)}$, давления $p_{(s)}$ и температуры $T_{(s)}$ на этой границе, а также температуры $T_{(0)}$ на границе пористой среды (x = 0).

4. Анализ решений

На Рис. 1 представлены распределения давления p и температуры T вблизи границы контакта ($\xi=0$) воды с температурой $T_e=280~{\rm K}$ и пористой среды с температурой $T_0=500~{\rm K}$, при характерных значениях основных физических параметров и $p_e=p_0=1~{\rm M}\Pi{\rm a},\,k=10^{-15}~{\rm m}^2,\,m=0,2$. Линии 1 и 2 получены с учетом и без учета капиллярных сил. Как видно из Рис. 1, процессы теплопереноса в области воды ($\xi<0$) оказывают существенное влияние на величину «ямы давления» [1] и ослабляют «эффект самопроизвольного впитывания» [3] по сравнению со случаем, когда температура на границе поддерживалась постоянной ($T=T_e$) [1].

Зависимость объема впитываемой жидкости от времени для вышеприведенного случая (см. Рис. 1) представлена на Рис. 2. Видно, что в смачиваемой среде темпы самопроизвольного всасывания увеличиваются практически на порядок.

На Рис. 3 приведены зависимости температуры $T_{(0)}$ (пунктирные линии) на границе пористой среды $\xi=0$, температуры $T_{(s)}$ (сплошные линии) на границе фазовых переходов и автомодельной координаты этой

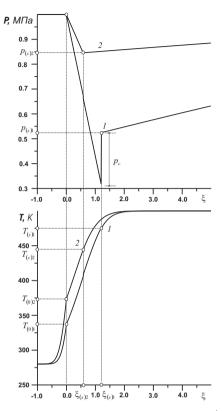


Рис. 1. Профилограммы давления и температуры при эффекте самопроизвольного всасывания воды ($p_e=p_0=1~{\rm M\Pi a}$). Линия 1 соответствует смачиваемой среде, линия 2 — несмачиваемой

границы $\xi_{(s)}$ от температуры воды T_e , соответствующие режиму самопроизвольного всасывания ($p_e=p_0=10^6~\mathrm{Ha}$) при температуре пористой среды $T_0=500~\mathrm{K}$. Линии 1 и 2 соответствуют случаям, когда коэффициент проницаемости среды равен $k=10^{-14}~\mathrm{m}^2$ и $k=10^{-15}~\mathrm{m}^2$ соответственно. Как видно из Рис. 3, существует некоторое характерное значение температуры закачиваемой воды $T_e(T_e/T_0\approx 0.74)$, при котором координата границы фазовых переходов $\xi_{(s)}$ обращается в нуль. Это означает, что фазовый переход (испарение или кипение) происходит на поверхности (границе) пористой среды. При дальнейшем повышении температуры воды T_e , граница фазовых переходов $\xi_{(s)}$ будет находиться в области x<0, следовательно, между подводимой жидкостью и пористой средой образуется слой, занятый паром.

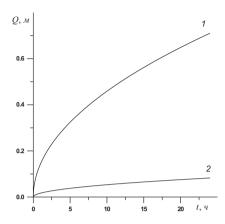


Рис. 2. Динамика процесса инжекции в зависимости от смачиваемости среды. Линия 1 и 2 соответствуют смачиваемой и нейтральной среде

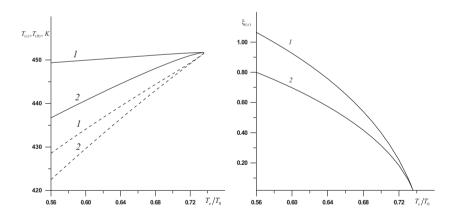


Рис. 3. Зависимость температуры на границе пористой среды $T_{(0)}$ (пунктирные линии), температуры на границе фазовых переходов $T_{(s)}$ (сплошные линии) и координаты этой границы $\xi_{(s)}$ от температуры закачиваемой жидкости T_e . Линия 1 соответствует проницаемости пористой среды $k=10^{-14} \mathrm{M}^2$, линия $2-k=10^{-15} \mathrm{M}^2$

5. Заключение

На основе анализа решений установлено, что

- капиллярные силы приводят к значительной интенсификации процесса инжекции;
- теплоперенос на границе пористой среды приводит к предварительному подогреву закачиваемой воды и ослабляет эффект «самопроизвольного всасывания»;
- с ростом температуры закачиваемой жидкости T_e происходит качественное изменение картины. Существует характерное значение температуры T_e^* , при превышении которой даже наличие капиллярных сил не может инициировать процесс впитывания.

Список литературы

- [1] Шагапов В. Ш., Насырова Л. А., Ильясов У. Р. Об инжекции воды в геотермальный пласт // Прикладная математика и техническая физика. 2002. Т. 43, № 4. С. 127–138.
- [2] Ильясов У. Р. Фильтрационные течения с фазовыми переходами при наличии интенсивных тепловых потоков: Дис. . . . канд. физ.-мат. наук. Уфа: ИПТЭР АН РБ, 2003.
- [3] Цыпкин Г. Г., Калоре К. Математическая модель фазовых переходов вода-пар в геотермальных системах при наличии капиллярных сил // Доклады академии наук. 2002. Т. 385, № 2. С. 177–180.