

Математическое моделирование закачки растворителя в скважину при одновременном электромагнитном воздействии

А. Я. Давлетбаев

Башкирский государственный университет, Уфа

Аннотация. Приведены результаты теоретических исследований возможности использования мощного высокочастотного (ВЧ) электромагнитного (ЭМ) излучения в сочетании с закачкой растворителя на месторождениях высоковязких нефтей с целью интенсификации добычи нефти. Предложена математическая модель воздействия на залежь высоковязкой нефти, учитывающая перекрестные эффекты тепломассопереноса, возникающие при движении многокомпонентной системы в пористой среде под действием ЭМ поля. Приведен анализ результатов расчетов предложенного метода.

Ключевые слова: высокочастотное электромагнитное поле, растворитель, термодиффузия

1. Введение

Из всех методов искусственного воздействия для повышения нефтеотдачи месторождений с тяжелыми высоковязкими нефтями наиболее эффективными остаются термические методы воздействия на пласт [1]. Они позволяют добывать нефть вязкостью до 10 Па·с.

Одним из новых методов является сочетание нагрева пласта со смепивающимся вытеснением, которое предполагает комбинированное воздействие на пласт ВЧ ЭМ поля и закачку в пласт растворителя [2]. При этом в связи с конечной электропроводностью труб скважин, передающих ЭМ энергию на забой, они нагреваются, и растворитель попадает в пласт уже в нагретом состоянии, причем температура нагрева зависит от мощности и частоты генератора ЭМ волн, забойного давления и других факторов.

2. Постановка задачи и основные уравнения

Рассматривается процесс воздействия на пласт, включающий закачку смешивающегося агента (растворителя) в добывающую скважину с одновременной обработкой ее призабойной зоны ВЧ ЭМ полем.

При постановке задачи учитываются явления термодиффузии и электротермодиффузии (термодиффузия ЭМ происхождения), проявляющиеся в многокомпонентной системе при ее взаимодействии с внешним ВЧ ЭМ полем [3].

В случае плоскорадиальной фильтрации рассматриваемые процессы нестационарной неизотермической фильтрации взаиморастворимых жидкостей (нефти и растворителя), подчиняющихся закону Дарси, описываются следующей системой уравнений:

$$\frac{\partial P}{\partial t} = \frac{k}{m\beta_f + \beta_c} \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r}{\mu_f} \frac{\partial P}{\partial r} \right),\tag{1}$$

$$\alpha_b \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(\lambda_b r \frac{\partial T}{\partial r} \right) - v \rho_f c_f \frac{\partial T}{\partial r} + q, \tag{2}$$

$$m\frac{\partial C_j}{\partial t} = \frac{1}{r}\frac{\partial}{\partial r}\left(rD\frac{\partial C_j}{\partial r}\right) - v\frac{\partial C_j}{\partial r} + \frac{1}{r}\frac{\partial}{\partial r}\left(r(\alpha_t + \alpha_t^e)D_0\frac{\partial T}{\partial r}\right), \quad (3)$$

$$v = -\frac{k}{\mu_f} \frac{\partial P}{\partial r}, \quad D = D_0 + l_0 v, \quad C_1 + C_2 = 1.$$
 (4)

Здесь j = 1, 2 — индексы компонентов для растворителя и нефти, соответственно; P, T, C_j — давление, температура, концентрация компонентов смеси; ρ_f, c_f — плотность и удельная теплоемкость смеси компонентов; α_b, λ_b — объемная теплоемкость и теплопроводность насыщенной пористой среды; m, k — пористость и проницаемость среды; β_f, β_c — коэффициенты сжимаемости смеси компонентов и скелета породы; D_0, D — коэффициенты молекулярной и конвективной диффузии, соответственно; l_0 — параметр рассеивания пористой среды; v — скорость фильтрации; α_t, α_t^e — параметры термодиффузии и электротермодиффузии; μ_f — вязкость смеси компонентов, которая определяется выражением

$$\ln \mu_f = C_1 \ln \mu_1 + C_2 \ln \mu_2.$$

Вязкость компонентов зависит от температуры по формуле $\mu_j = \mu_{j0} \exp(-\gamma_j \Delta T)$, где μ_{j0} — значения вязкости при $T = T_0$; $\Delta T = T - T_0$,

 T_0 — первоначальная температура среды; γ_j — коэффициенты, учитывающие зависимость вязкости каждого компонента от температуры. Теплопроводность и объемная теплоемкость насыщенной пористой среды считаются аддитивными величинами, зависящими от соответствующих параметров скелета пористой среды, растворителя и нефти.

Выражение распределенных источников тепла в уравнении теплопроводности можно записать в виде [4]:

$$q = 2 \cdot \alpha \cdot J \cdot \frac{r_w}{r} \cdot \exp\left(-2 \cdot \alpha \cdot (r - r_w)\right),$$
$$J = \frac{N_0}{S_b},$$
$$S_b = 2 \cdot \pi \cdot r_w \cdot h.$$

Здесь *J* — интенсивность излучения на забое скважины, определяемая мощностью *N*₀ и площадью *S*_b излучателя ЭМ волн; α , r_w — коэффициент затухания и радиус излучателя ЭМ волн.

3. Краевые условия

Формулировка начальных и граничных условий поставленной задачи определялась выбранным режимом работы скважины и осуществляемым воздействием. При нагнетании в пласт растворителя с одновременной ЭМ обработкой скважины основным являлось определение температуры поступающего в пласт растворителя. Аналогичный процесс рассматривался в работе [4], где получено следующее выражение для температуры растворителя на забое скважины:

$$T(r_w, t) = T_k + \frac{\eta W}{c_1 \rho_1 Q}.$$
(5)

Здесь η — часть энергии, выделяемой в скважине, которая затрачивается на нагрев растворителя; T_k , Q — температура и расход закачиваемого растворителя на устье скважины; W — мощность энергии, выделяемой в скважине [4].

Остальные краевые условия имеют вид:

$$P(r,0) = P_0, \quad T(r,0) = T_0, \quad C_1(r,0) = 0,$$
 (6)

$$P(r_w, t) = P_0 + \Delta P, \quad C_1(r_w, t) = 1,$$
(7)

$$P(r_e, t) = P_0, \quad \frac{\partial C_1(r_e, t)}{\partial r} = 0, \quad T(r_e, t) = T_0, \tag{8}$$

где P_0, T_0 — начальные пластовое давление и температура; ΔP — заданный постоянный перепад давления между забойным и пластовым давлением; t_{ob} — длительность воздействия.

Расход растворителя может быть определен из выражения [5]:

$$Q = Q_0 \frac{\mu_0 \left(\ln \frac{r_e}{r_w} - \frac{1}{2} \frac{(r_e^2 - r_w^2)}{r_e^2} \right)}{\int\limits_{r_w}^{r_e} \frac{\mu(r)}{r} dr - \int\limits_{r_w}^{r_e} \frac{r\mu(r)}{r_e^2} dr},$$
(9)

где Q_0 — первоначальный, до ВЧ воздействия, расход флюида (растворителя); r_e — контур питания скважины (радиус пласта).

4. Численные решения задачи и анализ результатов

Система уравнений (1)–(4) с краевыми условиями (5)–(9) решалась методом конечных разностей по неявной схеме. При расчете использованы значения термодиффузионных коэффициентов, полученных в работе [6] путем сравнения экспериментального и математического моделирования.

Расчеты проводились при следующих параметрах [4]: $P_0 = 10$ МПа; $\Delta P = 6$ МПа; $k = 10^{-12} \text{ m}^2$; $T_k = T_0 = 15^{\circ}\text{C}$; m = 0.3; $l_0 = 0.1$ м; $D_0 = 10^{-8} \text{ m}^2/\text{c}$; $\mu_{10} = 1.5 \cdot 10^{-3}$ Па·с; $\gamma_1 = 0.0128 \text{ 1/K}$; $\gamma_2 = 0.042 \text{ 1/K}$; $\beta_f = 10^{-9} \text{ 1/Па}$; $\eta = 0.2$; $\beta_c = 10^{-10} \text{ 1/Па}$; $r_w = 0.05$ м; $r_e = 60$ м; $N_0 = 60$ кВт; $\alpha = 0.0198 \text{ 1/м}$; $c_{10} = 1894 \text{ Дж/(кг·K)}$; $\rho_{10} = 835.08 \text{ кг/м}$; $\rho_2 = 950 \text{ кг/м}$; $\lambda_{10} = 0.119 \text{ Br/(м·K)}$; $\gamma_c = 5.049 \text{ Дж/(кг·K)}$; $\gamma_{\rho} = 0.804 \text{ кг/(м·K)}$; $\gamma_{\lambda} = 1.509 \cdot 10^{-4} \text{ Br/(m·K)}$; $\alpha_2 = 1912680 \text{ Дж/(м^3·K)}$; $\alpha_t = 0.0025 \text{ 1/K}$; $\alpha_t^e = 0.115 \text{ 1/K}$; h = 15 м; $t_{ob} = 100$ сут; $\mu_{20} = 6$ Па·с.

Результаты вычислений приведены на Рис. 1. Кривые распределения концентрации растворителя (Рис. 1(а)) имеют немонотонный характер. Кривые распределения температуры характеризуются (Рис. 1(b)) высокими значениями в околоскважинной зоне, далее, при удалении от ПЗП — быстрым монотонным снижением. Кроме того, в распределении температуры наблюдается характерный для ВЧ нагрева «горб» вследствие действия объемных тепловых источников. Температурное поле в пласте существенно зависит от фильтрационного сопротивления пластовой жидкости, мощности поля и давления на забое нагнетательной скважины (Рис. 1(b)). Сопоставление графиков распределения концентрации

Рис. 1. Распределение концентрации (а), температуры (b), вязкости флюида (c), давления (d) в пласте при $\mu_{20} = 6$ Па·с в различные моменты времени (1 — 5 сут, 2 — 20 сут, 3 — 50 сут, 4 — 100 сут)

(Рис. 1(a)) и температуры (Рис. 1(b)) показывает, что движение растворителя, нагретого в ПЗП, позволяет вводить в пласт тепло на значительные расстояния.

Распределения вязкости флюида в пласте согласуются с кривыми распределения концентрации и температуры (Рис. 1(с)). Аналогичные распределения давления (Рис. 1(d)) были получены в работах Николаевского [7]. В зонах, занятых вытесняемой и вытесняющей жидкостями, давление распределяется по логарифмическому закону.

Это означает, что ВЧ ЭМ поле влияет на сверхвязкие нефти, меняя характер распределения флюидов в зоне смешения с растворителем не только количественно, но и качественно.

Вышеописанные процессы можно регулировать заданием соответствующих параметров воздействия. Необходимой динамики изменения температуры на забое скважины можно добиться подбором оптимального сочетания мощности излучателя и давления на забое скважины.

При одновременном воздействии ВЧ ЭМ поля существенно интенсифицируется процесс диффузионного переноса массы. Таким образом, термодиффузия, возникающая из-за наличия градиента температур, и электротермодиффузия, возникающая из-за наличия градиента температуры в результате действия ВЧ ЭМ поля, вносят существенный вклад в процессы конвективно-диффузионного переноса массы.

Список литературы

- [1] Бурже Ж., Сурио П., Комбарну М. Термические методы повышения нефтеотдачи пластов. М.: Недра, 1989. 422 с.
- [2] Саяхов Ф. Л., Ковалева Л. А., Фатыхов М. А., Халиков Г. А. Способ добычи полезных ископаемых. Патент РФ № 1824983 // Б. И. 1997. № 29.
- [3] Нигматулин Р. И., Саяхов Ф. Л., Ковалева Л. А. Перекрестные явления переноса в дисперсных системах, взаимодействующих с высокочастотным электромагнитным полем // ДАН. 2001. Т. 377, № 3. С. 340–343.
- [4] Саяхов Ф. Л., Ковалева Л. А., Насыров Н. М. Изучение особенностей тепломассообмена в призабойной зоне скважин при нагнетании растворителя с одновременным электромагнитным воздействием // ИФЖ. 1998. Т. 71, № 1. С. 161–165.
- [5] Abernethy E. R. Production in ease of heavy oils by electromagnetic heating // J. Can. Petrol. Technol. 1976. 15. № 3. P. 91–97.
- [6] Саяхов Ф. Л., Ковалева Л. А., Насыров Н. М., Галимбеков А. Д. Влияние высокочастотного электромагнитного поля на перекрестные эффекты переноса в многокомпонентных системах // Магнитная гидродинамика. 1998. Т. 34, № 2. С. 148–157.
- [7] Николаевский В.Н., Бондарев Э.А., Миркин М.И. и др. Движение углеводородных смесей в пористой среде. М.: Недра, 1968. 190 с.