

Влияние угла наклона полости на теплообмен при свободной конвекции аномально термовязкой жидкости

К. В. Моисеев

Институт механики УНЦ РАН, Уфа

Аннотация. В работе численно моделируется двумерная свободная конвекция жидкости с квадратичной зависимостью вязкости от температуры в квадрате при различных углах наклона к горизонту. Вычисляются интегральные коэффициенты теплообмена на изотермических границах и минимальные критические числа Рэлея.

Ключевые слова: численное моделирование, термовязкая жидкость, теплообмен, критическое число Рэлея, конвекция

1 Постановка задачи

Рассмотрим задачу о свободной конвекции ньютоновской термовязкой жидкости в замкнутой квадратной области $D = [0; L] \times [0; L]$. Квадрат наклонен к горизонту под углом α (Рис. 1). Будем полагать, что подогревается «нижняя» граница квадрата, а «верхняя» охлаждается, «боковые» границы квадрата будем считать адиабатическими.

Естественная конвекция термовязкой жидкости в двумерной области описывается следующей безразмерной системой уравнений [1]:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0;$$

$$\frac{\partial u}{\partial t} + \frac{\partial (u^2)}{\partial x} + \frac{\partial (uv)}{\partial y} + \frac{\partial p}{\partial x} = \frac{\partial}{\partial x} \left(\overline{\mu}(T) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\overline{\mu}(T) \frac{\partial u}{\partial y} \right) + \operatorname{Gr} T \sin \alpha;$$

Рис. 1: Схема квадратной полости

$$\frac{\partial v}{\partial t} + \frac{\partial (uv)}{\partial x} + \frac{\partial (v^2)}{\partial y} + \frac{\partial p}{\partial y} = \frac{\partial}{\partial x} \left(\overline{\mu}(T) \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(\overline{\mu}(T) \frac{\partial v}{\partial y} \right) + \operatorname{Gr} T \cos \alpha;$$
$$\frac{\partial T}{\partial t} + \frac{\partial (uT)}{\partial x} + \frac{\partial (vT)}{\partial y} = \frac{1}{\operatorname{Pr}} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right),$$

где u, v — безразмерные продольная и поперечная составляющие скорости; p — давление и T — температура; x, y — безразмерные пространственные координаты и t — безразмерное время. Безразмерные параметры $\operatorname{Gr} = \frac{g\beta \triangle TL^3}{\nu^2}$ и $\operatorname{Pr} = \frac{\mu c}{k}$ — числа Грасгофа и Прандтля, $\overline{\mu}(T) = \frac{\mu(T)}{\mu_0}$ — безразмерная динамическая вязкость. В безразмерных параметрах L — характерный размер области; $\Delta T = (T_{\mathrm{H}} - T_{\mathrm{C}})$ — размерный перепад температур между «нижней» и «верхней» границами полости; g — ускорение силы тяжести; μ_0, ν, c, k — постоянные динамическая и кинематическая вязкости, теплоемкость и коэффициент теплопроводности жидкости; β — коэффициент теплового расширения; α — угол наклона полости к горизонту.

Параметры задачи приняты такими же, как и в работе [2], где рассматривалась конвекция жидкости с квадратичной зависимостью вязкости от температуры без учета поворота полости относительно горизонта. Число Прандтля полагается равным $\Pr = 118$, что соответствует жидкости с квадратичной зависимостью вязкости. Безразмерная вязкость определяется квадратичной зависимостью $\overline{\mu}(T) = 36T^2 + 1$, где учтено, что максимальная вязкость достигается при абсолютных температурах $T_{\rm H}$ и $T_{\rm C}$ и в 10 раз превосходит значение вязкости в вершине параболы, где при средней температуре $T_0 = \frac{(T_{\rm H}+T_{\rm C})}{2}$ достигается минимальная вязкость жидкости.

В рассматриваемой постановке граничные условия будут иметь вид: на адиабатических границах при x = 0 и x = 1:

$$u = 0, \quad v = 0, \quad \frac{\partial p}{\partial x} = 0, \quad \frac{\partial T}{\partial x} = 0;$$

на нижней границе при y = 0:

$$u = 0, \quad v = 0, \quad \frac{\partial p}{\partial y} = 0, \quad T = 0,5;$$

на верхней границе при y = 1:

$$u = 0, \quad v = 0, \quad \frac{\partial p}{\partial y} = 0, \quad T = -0, 5.$$

В качестве начальных условий примем состояние равновесия жидкости:

$$u = 0, \quad v = 0, \quad p = 0, \quad T = 0.$$

2 Численный метод и тесты

Для численного решения задачи применялся метод контрольного объема с использованием алгоритма «SIMPLE», подробно описанный в [3]. В качестве тестовых задач рассматривались задачи о свободной конвекции жидкости в полости с постоянной вязкостью и с квадратичной зависимостью вязкости от температуры. Система уравнений, граничные и начальные условия для задачи с постоянной вязкостью остаются такими же, как и в задаче с квадратичной зависимостью вязкости, а безразмерная вязкость полагается равной единице ($\overline{\mu}(T) = 1$).

При установившихся режимах конвекции тепловые потоки в силу уравнения притока тепла на изотермических стенках должны быть равны. Течение считается установившимся, если отличие тепловых потоков составляет менее 0, 1%, То есть требуется выполнение условия:

$$\label{eq:nu} \bigtriangleup \mathrm{Nu} = \left| \frac{\mathrm{Nu}_\mathrm{H} - \mathrm{Nu}_\mathrm{C}}{\mathrm{Nu}_0} \right| < 10^{-3},$$

где Nu_H, Nu_C — числа Нуссельта на «горячей» (y = 0) и «холодной» (y = 1) границах соответственно:

$$\mathrm{Nu}_{\mathrm{H}} = -\int_{0}^{1} \left(\frac{\partial T}{\partial y}\right)_{y=0} dx, \quad \mathrm{Nu}_{\mathrm{C}} = -\int_{0}^{1} \left(\frac{\partial T}{\partial y}\right)_{y=1} dx;$$

Количество узлов	Средние числа Нуссельта	Относительная	
		погрешность (%)	
(10×10)	2,0403		
(20×20)	1,9691	3,489	
(40×40)	1,9503	0,954	
(80×80)	1,9456	0,240	

Таблица 1.	Сходимость	чисел	Нуссельта	на	изотермических	стенках	для
постоянной вязкости							

Таблица 2. Сходимость чисел Нуссельта на изотермических стенках для квадратичной зависимости вязкости

Количество узлов	Средние числа Нуссельта	Относительная погрешность (%)
(10×10)	4,64	
(20×20)	4,35	6,25
(40×40)	4,55	4,59
(80×80)	4,73	3,95

Nu₀ — число Нуссельта на подогреваемой границе в начальный момент времени.

Тестовые расчеты для постоянной вязкости производились в случае стационарного режима при $\Pr = 7$ и $\operatorname{Gr} = 1000 - \operatorname{Tadn}$. 1, а для квадратичной зависимости вязкости в случае хаотических режимов при $\Pr = 118$ и $\operatorname{Gr} = 12000 - \operatorname{Tadn}$. 2. Безразмерный временной шаг полагался равным $\Delta t = 10^{-4}$, числа Нуссельта осреднялись по достаточно большому промежутку времени:

$$\mathrm{Nu} = \frac{1}{(t_{\mathrm{end}} - t_0)} \int_{t_0}^{t_{\mathrm{end}}} \mathrm{Nu}(t) dt.$$

Относительная погрешность определялась формулой:

$$\triangle_{rel} = \left| \frac{\mathrm{Nu}_{\mathrm{n}} - \mathrm{Nu}_{2\mathrm{n}}}{\mathrm{Nu}_{\mathrm{n}}} \right|.$$

Видно что, как в случае стационарной конвекции с постоянной вязкостью, так и в случае хаотической конвекции с квадратичной зависимостью, теплообмен для сеток 40 × 40 и 80 × 80 практически мало отличается. Полученные результаты позволяют сделать вывод, что метод контрольного объема и алгоритм «SIMPLE» при выбранном шаге интегрирования дают вполне удовлетворительные результаты.

3 Результаты моделирования

Все расчеты производились при фиксированном числе $\Pr = 118$ на равномерной сетке 50 × 50 узлов. Уравнения конвекции интегрировались с постоянным безразмерным временным шагом $\Delta t = 10^{-4}$. Числа Грасгофа варьировались в диапазоне $1 \leq \text{Gr} \leq 40000$, а угол наклона полости α в интервале $0^{\circ} \leq \alpha \leq 90^{\circ}$ с шагом в 15 градусов.

В работе [2] для угла наклона $\alpha = 0^{\circ}$ установлены области стационарных, квазипериодических и хаотических режимов конвекции. Показано, что возможны три стационарных режима конвекции (одновихревой, симметричный двухвихревой и асимметричный двухвихревой), периодические, квазипериодические и хаотические режимы.

В отличие от конвекции, рассмотренной в работе [2], при угле наклона полости $\alpha = 15^{\circ}$ было обнаружено два типа стационарных одновихревых течений. Первый тип реализуется в диапазоне чисел Рэлея Ra = Pr · Gr при числах Рэлея в интервале $1180 \leq \text{Ra} \leq 271400$, а второй тип — в диапазоне $283200 \leq \text{Ra} \leq 1534000$ и отличается от первого наличием вложенных малых вихрей, симметрично расположенных относительно оси симметрии полости. При числах Рэлея $1652000 \leq \text{Ra} \leq 2950000$ обнаружен колебательный режим конвекции, характеризующийся противофазными колебаниями, а в интервале $2950000 < \text{Ra} \leq 4720000$ реализуются синфазные колебания чисел Нуссельта на изотермических стенках.

При $30^{\circ} \leq \alpha \leq 90^{\circ}$ обнаружены только стационарные одновихревые колебания двух типов. Бифуркация происходит в окрестности числа Ra = 236000, после чего одновихревое течение трансформируется в одновихревое с вложенными малыми вихрями.

На Рис. 2 показаны интегральные числа Нуссельта на подогреваемой границе в зависимости от числа Рэлея для жидкости с квадратичной зависимостью вязкости при различных углах наклона полости. Видно, что с увеличением угла α при фиксированном числе Ra теплообмен улучшается. Однако, при $\alpha = 90^{\circ}$ (сплошная тонкая линия) теплообмен становится хуже, чем для углов 60° и 75°.

Интегральные числа Нуссельта на «горячей» стенке в зависимости от числа Рэлея для жидкости с постоянной вязкостью приведены на Рис. 3. Очевидно, что при увеличении угла α наблюдается аналогичная картина, но для всех углов наклона теплообмен становится выше, чем для жидкости с квадратичной зависимостью вязкости.

На Рис. 4 представлена зависимость минимального критического числа

Рис. 2. Карта режимов теплообмена для квадратичной зависимости вязкости: $1 - \alpha = 0^{\circ}, 2 - \alpha = 15^{\circ}, 3 - \alpha = 30^{\circ}, 4 - \alpha = 45^{\circ}, 5 - \alpha = 60^{\circ}, 6 - \alpha = 75^{\circ}, 7 - \alpha = 90^{\circ}$

Рис. 3. Карта режимов теплообмена для постоянной вязкости: $1 - \alpha = 0^{\circ}$, $2 - \alpha = 15^{\circ}$, $3 - \alpha = 30^{\circ}$, $4 - \alpha = 45^{\circ}$, $5 - \alpha = 60^{\circ}$, $6 - \alpha = 75^{\circ}$, $7 - \alpha = 90^{\circ}$

Рис. 4. Зависимость критического числа Рэлея от угла наклона полости: 1 — жидкость с квадратичной зависимостью вязкости, 2 — жидкость с постоянной вязкостью

Рэлея Ra_C от угла α для обеих жидкостей. Видно, что с увеличение угла наклона, минимальное критическое число Рэлея уменьшается, как для жидкости с постоянной вязкостью, так и для жидкости с квадратичной зависимостью вязкости, но для последней жидкости падение числа Ra_C более ярко выраженно.

4 Заключение

Установлены области различных режимов конвекции при различных углах наклона полости для жидкостей с постоянной вязкостью и с квадратичной зависимостью вязкости от температуры. Построены карты режимов теплообмена. Показано, что квадратичная зависимость вязкости ухудшает теплообмен на изотермических границах для всех α . Обнаружено что, как для термовязкой жидкости, так и для жидкости с постоянной вязкостью с увеличением угла наклона теплообмен улучшается. Однако, при $\alpha = 90^{\circ}$ теплообмен становится хуже, чем для углов наклона полости, находящихся в интервале $60 \leq \alpha \leq 75$. Показано, что с ростом угла наклона полости минимальные критические числа Рэлея убывают.

Список литературы

- [1] Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972.
- [2] Ильясов А. М., Моисеев К. В., Урманчеев С. Ф. Численное моделирование термоконвекции жидкости с квадратичной зависимостью вязкости от температуры // Сибирский журнал индустриальной математики. 2005. Т. VIII. № 4 (24). С. 51-59.
- [3] Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. М.: Энергоатомиздат, 1984.